circio

The leader in circular RNA expression systems

Company presentation Q4 2025

Circio has developed a powerful alternative to the central dogma of molecular biology

The circ Vec dogma:

DNA

→ circular RNA →

Protein

- circVec is a platform technology for vector-based gene delivery
- circVec enables enhanced and prolonged gene expression
- Circio has unique expertise, IP & know-how covering circVec

Human circRNA was first described by Circio scientists

Dr Thomas B Hansen

Dr Erik D Wiklund

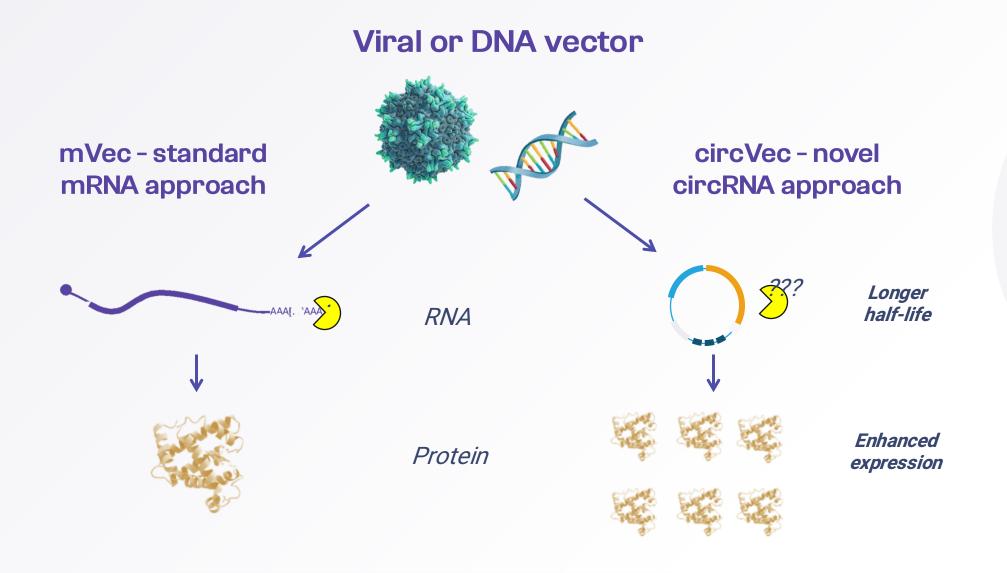
nature 8,000 citations

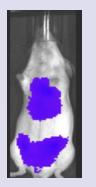
Published: 27 February 2013

Natural RNA circles function as efficient microRNA sponges

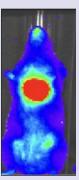
Thomas B. Hansen 🖾, Trine I. Jensen, Bettina H. Clausen, Jesper B. Bramsen, Bente

Finsen, Christian K. Damgaard & Jørgen Kjems □




circVec

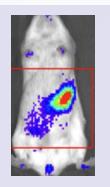
Circio's unique and proprietary circRNAbased gene expression platform technology



Circio is deploying the circVec technology to enhance conventional gene and cell therapy

Enhanced expression

AAV benchmark


AAV circVec

- >40x increased protein expression for circRNA- vs. mRNA-based AAVs
- Enhanced, safer and lower cost AAV gene therapy

Improved durability

LNP:DNA benchmark

LNP:DNA circVec

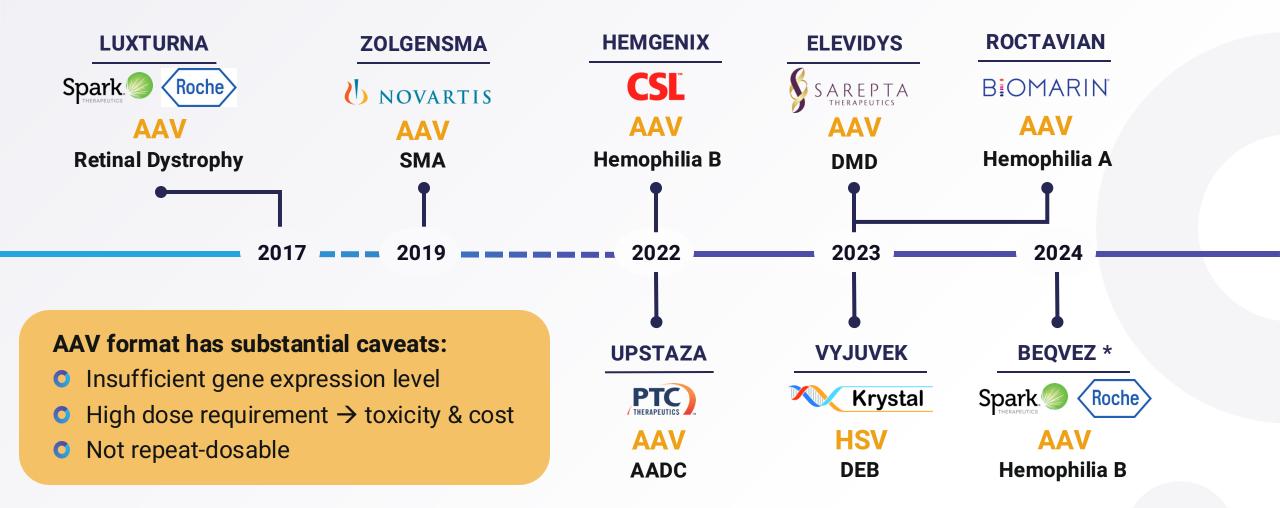
- >6 month durability for circRNA- vs.
 <3 weeks for mRNA-based vectors</p>
- Durable and re-dosable in vivo CAR-T therapy

circVec: a first-in-class, industry-leading circRNA expression system with platform potential in several disease areas

Heart, eye and CNS genetic disease 1 mill. patients in target diseases Enhanced, safer and lower cost AAVs Research collaboration with global pharma

Next Gen AAV

Cancer, autoimmune disease


LNP: DNA format, redosable

Very large patient population, only autologous options available today

In vivo CAR

The AAV vector is the main gene therapy format today, 7 approved products to date

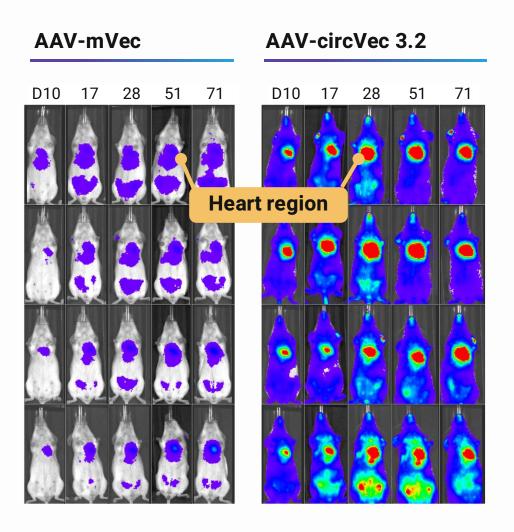
circVec value proposition for AAV gene therapy: unlocking dose reduction to lower toxicity and cost

Danon Disease Patient Dies in Rocket Gene Therapy Trial

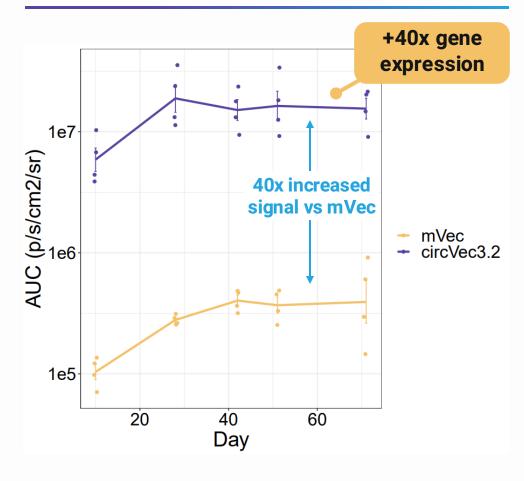
May 27, 2025

By Alex Philippidis

Rocket Pharmaceuticals acknowledged the death of a patient in a pivotal trial assessing its Danon disease gene therapy candidate RP-A501, a study that the FDA has placed on clinical hold.

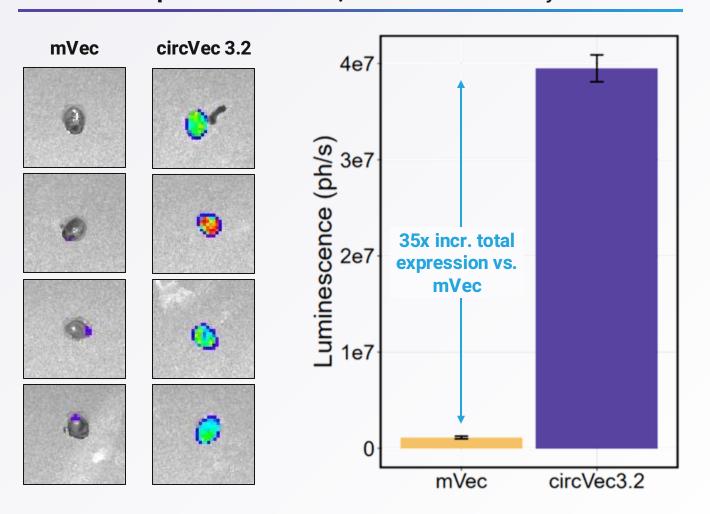

AAV gene therapy for Danon disease:

- Clinical benefit demonstrated, but severe toxicity
- Very high AAV dose level required (= high tox & cost)
- > Severe adverse events, incl. risk of death

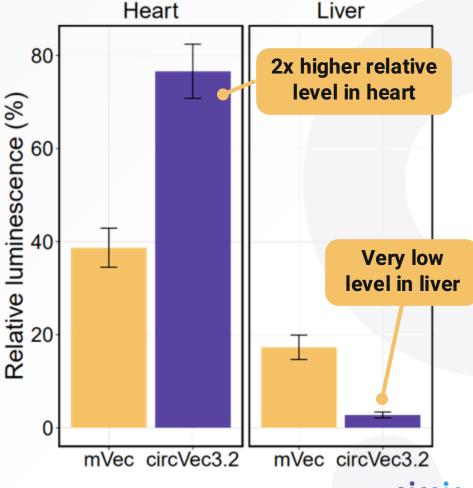

Circio's circVec technology can unlock:

- Significant AAV dose reduction with same clinical benefit
- Reduced toxicity and cost, better commercial viability
- Better, safer and lower cost AAV gene therapy

40-fold enhanced expression in heart for circVec-AAV vs. conventional mRNA-based AAV

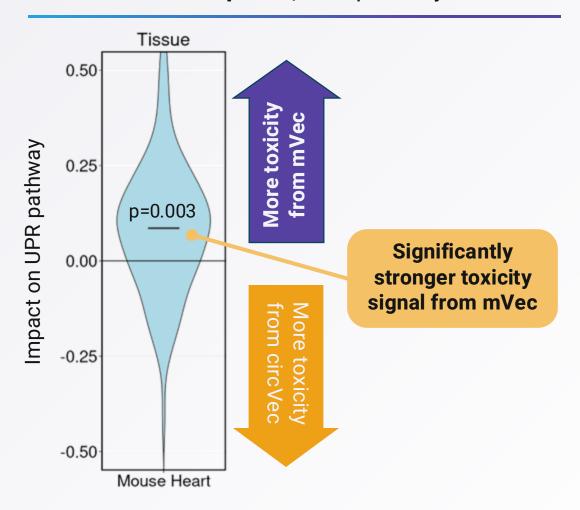


Gene expression quantification, f-luc IVIS signal



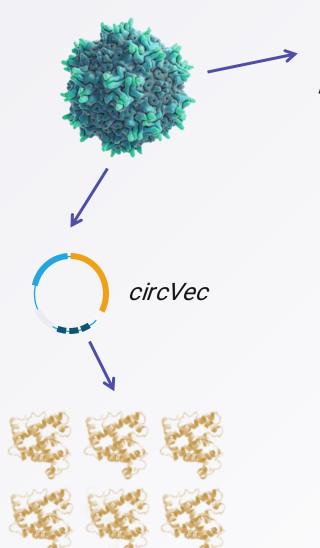
Increased target specificity of circVec-AAV: more expression in heart, less in liver

Increased expression in heart, ex vivo tissue analysis week 10

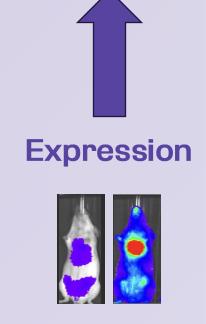


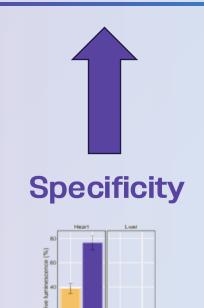
...and reduced off-target liver expression

Reduced toxicity of circVec-AAV in heart, despite 40-fold higher gene expression


Cellular stress response, UPR pathway activation

Unfolded Protein Response (UPR) activation is a major contributor to AAV toxicity in patients


- AAV-circVec shows less activation of UPR pathway in heart than AAVmVec at same dose
 - Despite 40x increased gene expression
 - Confirmed in various cell lines


Summary: AAV-circVec confers three major advantages for the treatment of genetic heart disorders

circVec-AAV compared to benchmark mVec-AAV:

Heart, eye and CNS selected as top three target tissues for AAV-circVec development

		Heart 🥻		Eye		CN	IS 🛞	
In vivo		• 40x increased activity for circVec 3.2		7x increased activity for circVec 2.0		 4x increased activity for circVec 2.1 (ongoing) 		
results	0	4.0 testing ongoing		3.2/4.0 testing 4Q'25		3.2/4.0 testing 1Q´26		
Rational	o e	Increase on-target expression		Maximize local payload secretion		Enhanced local CNS payload expression		ad
		○ Reduce systemic dose,→ lower tox and cost		Reduced local dose → less inflammation, cost		Open new AAV opportunities in challenging CNS diseases		
Market	1.	1. Danon disease n = 1,500-2,000		n = 6-7 mill.		Tay-Sachs, KrabbeGaucher disease ++		
pportuni	ties 2.	2. Fabry disease n= 30-40,000		2. Diabetic Mac'lr Edema (DME) n= 20-25 mill.		Partner with CNS-AAV companies		
	No approva	Portunity 1: Danon disease No approvals, validated arget, low technology risk		Opportunity 2: wet AMD Very large market, delivery issues for approved options			unity 3: with major unmet harma activity	10

circVec: a first-in-class, industry-leading circRNA expression system with platform potential in several disease areas

Heart, eye and CNS genetic disease

1 mill. patients in target diseases
Enhanced, safer and lower cost AAVs
Research collaboration with global pharma

Next Gen AAV

Cancer, autoimmune disease

LNP: DNA format, redosable

Very large patient population, only autologous options available today

In vivo CAR

circVec has a unique window of opportunity for in vivo cell therapy applications

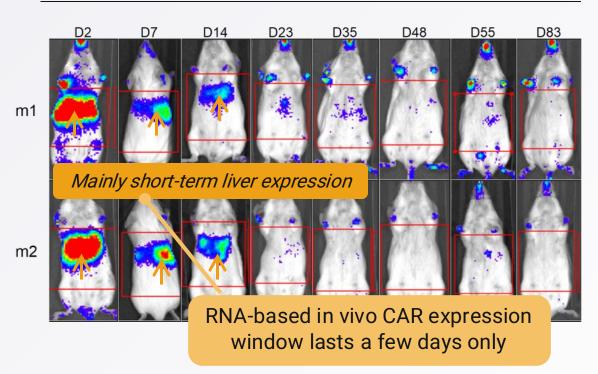
In vivo CAR modalities - duration

 Days
 Months
 Permanent

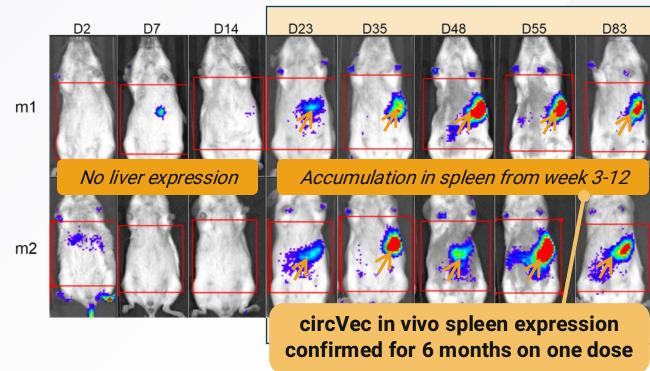
 mRNA & circRNA
 ← circVec-DNA opportunity →
 Lentiviral

circVec-DNA benefits

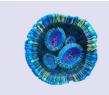
- Non-genome integrating
- > 6 months duration of expression on single dose
- Redosable
- Avoids liver-expression


Therapeutic applications

- O Cancer, e.g. lymphoma
 - Ex vivo CAR-T effective, but expensive
 - Lentiviral risk of secondary malignancies
 - RNA in vivo CAR not sufficient duration
- Autoimmune disease, e.g. Lupus
 - secondary opportunity



In vivo cell therapy: circVec expression duration > 6 months vs. 2 weeks for mVec


LNP-mVec (mRNA), luminescence Systemic I.V. delivery, single dose on Day 0

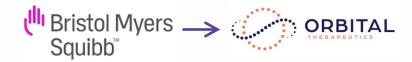
LNP-circVec (circRNA), luminescence Systemic I.V. delivery, single dose on Day 0

LNP-delivery formulation

Recent deal activity highlights substantial commercial opportunities in Circio areas

AAV gene therapy

Licensing, November 2025


\$75m up-front

+ \$400m milestones

AAV gene therapy for genetic eye disease

- AAV engineering platform
- Phase 1, novel therapeutic candidate for vision loss

In vivo cell therapy

M&A, October 2025

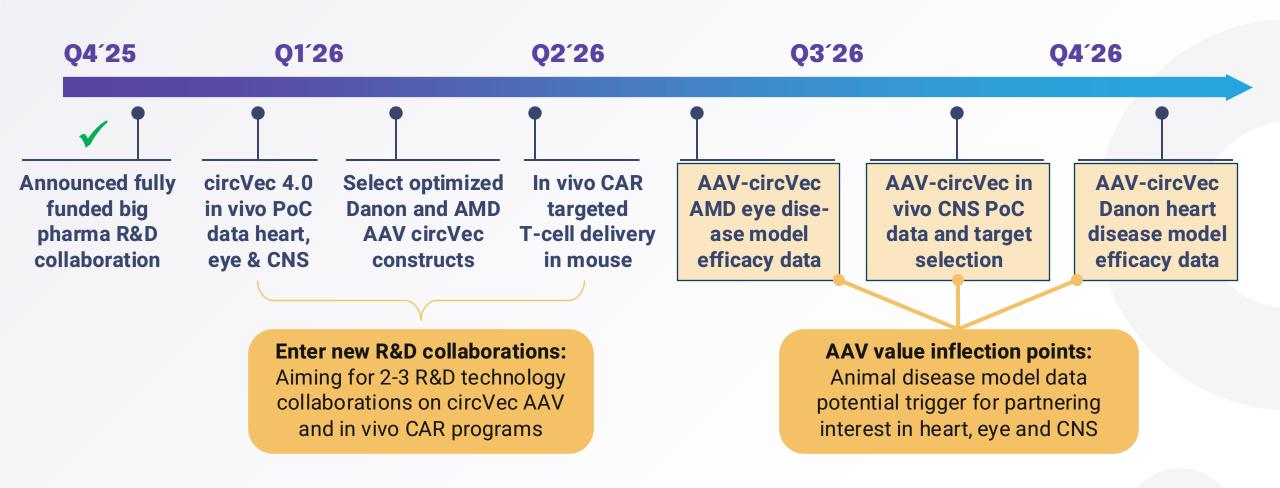
\$1.5b

in cash buy out

In vivo CAR-T therapy for autoimmune disease

- LNP-delivered synthetic circular RNA platform
- Pre-clinical, CD19 CAR-T

M&A, June 2025


\$2.1b

in cash buy out

In vivo CAR-T therapy for autoimmune disease

- LNP-delivered synthetic mRNA platform
- Phase 1-ready, CD19 CAR-T

Rich pipeline of R&D and BD milestones next 12 months

Development plan with near-term R&D milestones

	Technical concept	In vitro PoC	In vivo technical PoC	In vivo disease model	IND enabling	Target milestones next 6-9 months
circVec-AAV	Heart - Care	diomyopath	ny	Enhance and low gene th	er cost	Q4'25 - circVec 3.2/4.0 heart Q4'25 - circVec 3.2 eye + CNS in vivo data Q1'26 - Danon disease construct first data Q1'26 - wAMD disease construct first data
In vivo CAR-T	Spleen			ble and re-dosable vo CAR-T therapy		Q4'25 - circVec CAR vectors in vitro testing Q1'26 - T-cell targeted LNP delivery in vivo Q1'26 - In vivo T-cell reporter expression Q2'26 - In vivo T-cell CAR transduction

circVec is a first-in-class, industry-leading circRNA expression system: Take-home messages

 AAV-circVec outperforms conventional heart gene therapy on expression, specificity and toxicity

In vivo cell therapy approach with new and differentiated window-of-opportunity in area of very high deal activity

Rich pipeline of R&D milestones and news flow in 2026: multiple shots on goal

In-house

circVec in vivo validation in relevant tissues and disease models

- Next step: Testing circVec-AAVs for Danon disease and AMD

Partnering

Entered first partnership with global pharma company in Q4'25

- **Next step:** Additional partnerships in open disease areas

Circio features broadly in international industry media

Circular RNA technology: the future of gene therapy

Pioneering circular RNA could redefine what the future of gene therapy looks like. Erik Digman Wiklund, CEO of Circio, shares how his company's platform is enhancing gene expression and tackling toxicity challenges through smarter design and scientific collaboration.

Analyst Group

Intervju med Circios VD Erik Digman Wiklund

"Den som investerar i dag får möjlighet att ta position i en teknik som kan förändra framtidens genterapi innan den blir allmänt etablerad."

Cell & Gene Bioprocessing Technology & Manufacturing

Bringing New Ideas to AAV Gene Therapy

As safety concerns and commercial doubts threaten the AAV gene therapy field, new technologies may offer a "well-rounded" solution.

By Erik Wiklund | 11/20/2025 | 3 min read | Discussion