circio
 15 ${ }^{\text {th }}$ International
 circAde, a viral vector system for high and durable protein expression

 Adenovirus MeetingAbstract \#16
O'Leary ET ${ }^{1,2}$, Vikberg $\mathbf{S}^{1,2}$, Foord $E^{1,2}$, Wiklund ED ${ }^{1}$, Levitsky V 1, Hansen TB ${ }^{1}$

1. Circio AB, Stockholm, Sweden
2. Karolinska Institutet, CLINTEC, Huddinge, Sweden

Introduction

Circular RNAs (circRNAs) are naturally occurring transcripts found in all eukaryotes. CircRNAs typically derive from protein-coding exons prone to backsplicing (non-linear splicing in which an upstream splice acceptor attacks a downstream donor, see schematic below). In contrast to mRNAs, circRNAs are highly stable molecules with sustained effects within cells. Understanding the biogenesis and potential of circRNA allows repurposing the stable circRNA features into durable protein-coding templates. Here, we show our development of our vector-based system for efficient delivery and expression of circRNA.

Choice and composition of IR dramatically impacts circRNA biogenesis
Based on endogenous human loci with high-yield circRNA production, the prevalent model for circRNA biogenesis involves flanking inverted repeats (IRs). We show that the IRs are required for biogenesis (Fig. 1A-C), and that the choice of IR dramatically impacts circRNA yield. Here, bioinformatic analysis of publicly available RNA-Seq datasets was used to identify highly abundant circRNAs (Fig. 1D). Several IR's flanking these abundant circRNAs were incorporated into our circRNA cassette to examine their ability to drive backsplicing (Fig. 1E-G)

Figure 1: Optimization of flanking inverted repeats (IRs). A) Schematic representation of circRNA cassettes with or downstream inverted repeat (IR). B-C) Biogenesis as measured by qRT-PCR (B) and protein yield measured by western blotting (C) from circRNA
cassettes with or without downstream IR. D) Schematic representation of circRNA cassettes with depicting IR position, where differen
. cassettes with or without downstream IR. D) Schematic representation of circRNA cassettes with depicting IR position, where differen
proximal IR elements from highly expressed endogenous circRNAs are incorporated. E-F) Biogenesis as measured by qRT-PCR (E) and protein yield measured by western blotting (F) from circRNA cassettes with different IRs. G) The impact of downstream IR sequence
composition on circRNA biogenesis as measured by qRT-PCR normalized to GAPDH mRNA.

Importance of cassette design for protein-coding circRNA

Endogenous circRNAs are not per se a template for translation. Thus, protein translation from circRNA requires an IRES (internal ribosomal entry site) for cap-independent translation (Fig. 2A). Here, testing 10 different designs using 2 different IRES elements (schematically shown in Fig. 2B), a dramatic design-dependent effect on biogenesis was observed by protein expression, with high and consistent yield from the circRNA-producing D4 and D5 designs (Fig. 2C).

Figure 2: Choice of IRES and IRES/ORF composition impact circRNA expression: A) CircRNA translation depends on cap-independent translation and requires IRES (internal ribosome entry site) and ORF (Open Reading Frame) as shown. B) Schematic representation of
vector vector cassette used for circRNA expression. C) Protein expression from ten different IRES/ORF designs (D1-D10) using two different
vector
IRES elements was assessed by western blot. vector cassette used for circRNA expression.
IRES elements was assessed by western blot.

Enhanced circRNA stability confers prolonged protein expression

Almost all cellular RNA turnover is facilitated by exonucleolytic decay. Circular RNAs are devoid of 5^{\prime} and 3^{\prime} ends and thereby resistant to exonucleases. Consequently, high stability and long half-lives are observed for circRNA compared to mRNA (Fig. 3A-B). To benchmark the circRNA expression cassette with conventional mRNA-based expression vectors, the backbone. The D4_IRES1 design showed superior protein yield 48 hours after transfection (Fig. 3C-E), the same backbone. The D4_IRES1 design showed superior protein yield 48 hours after transfection (Fig. $3 \mathbf{C - E}$), despite reduced levels of RNA (Fig. 3E)
effective than cap-dependent translation.

B
$\sqrt{\text { altaten }}$

	Minutes	Hours	Days
mRNA	530	8.8	0.37
circRNA	8100	135	5.63

CircVac, a viral-based expression vector for durable antigen expression

The enhanced stability of circular RNA over mRNA has garnered interest in the development of circular RNA based therapies for disorders where durable protein expression may lead to favourable outcomes, such as vaccination. Viruses are effective vehicles for delivery of transgenes and have been engineered into vaccine vectors capable of stimulating immune responses against the antigens from the encoded transgenes. Here, we describe the generation of our proprietary circVac vector system, a viral vector for delivery of circRNA-encoded antigens (Fig. 4A). We demonstrate successful expression of a model antigen from our circVac vector and observe superior expression of the antigen at later timepoints (Fig. 4B-C). We hypothesize that the combination of intrinsic immunostimulatory features of the circVac vector and prolonged antigen expression from the circular RNA template, could improve vaccine efficacy.

Figure 4: circVac, a viral vector-based system for durable antigen expression. A) Schematic representation of circVac vector backbone (upper). Schematics of mRNA and circcNA expression cassettes, as denoted, inserted within circVac backbone at denoted position
(lower). B) Antigen protein expression of antigen payload at early (48hr) and late (96hr) timepoints was assessed by western blot. Vector
 protein expression was used as a proxy to assess viral infection and beta-actin was used as a loading control. C) Quantification
RNA expression from circVac and mRNA encoding viral vector, was assessed by RT-qPCR and normalised to GAPDH mRNA.

High yield circAde expression is dependent on position of circRNA cassette
In addition to vaccination, viruses are attractive vectors for cancer treatment. Conditionally replicating, also known as oncolytic viruses, have been shown to be an effective form of immunotherapy for treatment of cancer due to their ability to selectively replicate in cancer cells resulting in tumour cell lysis and enhanced immune response. Here, we describe the generation of our proprietary circAde vector, a conditionally-replicating viral vector capable of delivering circular RNA to solid tumours. Effective expression of circular RNA from circAde vectors depends highly on site of integration. From nine initial genome designs, only six circAdes were functional (Fig. 5A). To further assess the effect of circRNA integration site on viral fitness the ratio of infectious units per viral particles were assessed (Fig. 5B-C). Additionally, dramatic differences in circRNA-based protein expression were observed for the functional circAdes (Fig. 5D-E) Comparing circRNA-derived protein expression to IU/VP ratio, higher protein expression was generally associated with lower IU/VP ratios (Fig. 5F).

Figure 5: Impact on genome integration site strategy on vector functionality and circRNA biogenesis. A) Schematic representation of 9 with grey cross, no viable circAdes were obtained. B) Schematics depicting experimental set-up for viral particle (VP) and infectious unit with grey cross, no viable circAdes were obtained. B) Schematics depicting experimental set-up for viral particle (VP) and infectious unit
(IU) assessment. C) Graph depicting IU/VP ratios, where IU was assessed by hexon staining and VP was assessed by chromatography. D) Western blot on cells transduced with six different circAdes and empty vector (EV) control using payload-specific antibody (upper panel) or loading control (bottom panel). E) Graph depicting quantification of payload relative to loading control. F) Scatter plot depicting protein expression relative to $\log (I U / V P)$ ratio. Linear regression analysis was performed with GraphPad, and a significant negative correlation $(p=0.0302)$ was observed between payload expression and IU/VP ratios.

Conclusion

1) Choice and composition of IR is crucial for high yield circRNA biogenesis.
2) IRES/ORF positioning is essential for generation of protein-coding circRNAs.
3) Superior circRNA stability facilitates accumulation of circRNA and prolonged protein expression.
4) circVac vector shows high yield antigen expression.
5) circAde functionality and expression is highly dependent on circRNA cassette integration site.
The results support further development of the circRNA expression vectors towards therapies where high and prolonged expression of any gene of interest is warranted.

Acknowledgements

This study was funded by Circio Holding ASA Norway. The authors thank everyone in the company for a great atmosphere and working environment. The authors also thank the MUK group at the Karolinska Institutet for their collaboration. We would also like to thank OD260 for production circAde viruses.

Contact information
eoghan.oleary@circio.com

