circio
 CircAde, a vector system for spliceosome dependent circRNA biogenesis and prolonged more effective protein expression

Abstract \# 1095 Presented at ASGCT 2023

O'Leary ET ${ }^{1,2}$, Vikberg $\mathrm{S}^{1,2}$, Foord $\mathrm{E}^{1,2}$, Wiklund E^{1}, Ottesen L^{1}, Levitsky V^{1}, Hansen TB ${ }^{1}$ 1. Circio Holding ASA, Lysaker, Norway
2. Karolinska Institutet, CLINTEC, Huddinge, Sweden

Introduction

Circular RNA (circRNA) constitutes a novel class of endogenously
expressed RNA. CircRNAs are generated by a non-linear splicing event in which a upstream splice acceptor attacks a downstream donor, known as backsplicing. In contrast to mRNA, circRNAs are resistant to
exonucleolytic decay which results in high intra-cellular stability and exonucleolytic decay which results in high intra-cellular stability and
persistence. Here, we show our development of a circRNA expression persistence. Here, we show our development of a circRNA expression
platform and our proprietary circAde vector system towards efficient delivery and expression of protein-encoding circRNA in vivo.

2. Importance of cassette design for protein-
coding circRNA

Protein translation from circular RNA requires an IRES (internal ribosomal entry site) for cap.
independent translation (Fig. 2A). Here, testing 10 different designs using 2 different IRES

 protein translation, choice of IRES significantly affects circular RNA biogenesis (Fig. 2D-F)
Here, we hhow that speefific Rese-elements capable of initiating high levels of translation
negatively impact circRNA biogenesis.

3. Modifications of flanking regions affect circRNA
biogenesis
To further boost circRNA yield from our circRNA cassette, modifications were introduced in
the flanking regions of our cassette. Two approaches were examined; modification of of upstram intron (U) to facilitate enhanced transcription (Fig. 3 AA) or introduction of
downstream (D) elements to stimulate backsplicing (Fig. 3 A). Here, insertion of upstream

4. IRES-mediated circRNA translation outperforms mRNA

To benchmark the circRNA expression cassette with conventional mRNA-based expression
vectors, the D4 circRNA comprising either IRES1 or IRES2 was compared to mRNA

 suggesting that cap-independent IRES-mediated translation is more effective than cap-
dependent translation.

5. Enhanced circRNA stability confers prolonged protein expression
Almost all celluar R RA turnover is facilitated by exonucleolytic decay. Circular RNAs are
devoid of 5 ' and 3 ' ends and thereby resistant to exonucleases Conseequenty high stability devoid of 5^{5} and 3^{\prime} ends and thereby resistant to exonucleases. Consequently, high stability
and long half-lives are observed for circRNA compared to mRNA (Fig. $5 A-B)$.
 same backbone. The inherent stability of circRNA results in RNA and protein accumulation ove sime whereas mRNA levelsen decline rapidly (Fig. 5C-E), suggesting that the ciricRNA A-based vectoos
lesult in prolonged experession

6. High yield circAde expression is dependent on
the positioning of the circRNA cassette
Effective expressing of circular RNA from proprietary circAde vectors depends highly on site
of integration. From nine initial genome designs, only six circAdes were functional (Fig. 6A). of integration. From nine initial genome designs, only six circAdes were functional (Fig. $6 A$)
Dramatic differences in circRNA-based protein expression were observed for the functiona Oramatic dififerenc.
circAdes (fig. 6 BB).

в

Conclusions

1) Choice and composition of $I R$ is crucial for high yield circRNA biogenesis.

IRES/ORF positioning is essential for generation of proteincoding circRNAs.
3) Upstream intron modifications negatively impact circRNA biogenesis.
4) IRES-mediated circRNA translation outperforms mRNA
5) Superior circRNA stability facilitates accumulation of
circRNA and prolonged protein expression.
6) Successful high-yield design for circRNA expression from circAde demonstrated.
The results support further development of the circRNA cassettes and circAde vectors towards therapies where high and prolonged expression of any gene of interest is desired.

Acknowledgements
This study was funded by Circio Holding ASA Norway. The authors thank everyone in
the company for a great atmosphere and working environment. Contact information

\square

Eoghan.oleary@circio.com

