TG mutant RAS neoantigen vaccine

Dr Erik Digman Wiklund, CBO

RAS Targeted Drug Discovery Europe Vienna, 27 February 2020

targovax

IMPORTANT NOTICE AND DISCLAIMER

This report contains certain forward-looking statements based on uncertainty, since they relate to events and depend on circumstances that will occur in future and which, by their nature, will have an impact on the results of operations and the financial condition of Targovax. Such forward-looking statements reflect the current views of Targovax and are based on the information currently available to the company. Targovax cannot give any assurance as to the correctness of such statements.

There are a number of factors that could cause actual results and developments to differ materially from those expressed or implied in these forward-looking statements. These factors include, among other things, risks or uncertainties associated with the success of future clinical trials; risks relating to personal injury or death in connection with clinical trials or following commercialization of the company's products, and liability in connection therewith; risks relating to the company's freedom to operate (competitors patents) in respect of the products it develops; risks of non-approval of patents not yet granted and the company's ability to adequately protect its intellectual property and knowhow; risks relating to obtaining regulatory approval and other regulatory risks relating to the development and future commercialization of the company's products; risks that research and development will not yield new products that achieve commercial success; risks relating to the future development of the pricing environment and/or regulations for pharmaceutical products; risks relating to the company's ability to secure additional financing in the future, which may not be available on favorable terms or at all; risks relating to currency fluctuations; risks associated with technological development, growth management, general economic and business conditions; risks relating to the company's ability to retain key personnel; and risks relating to the impact of competition.

Introduction

- 2. A vaccine approach to target mutant RAS
- 3. TG vaccine clinical data
- 4. Summary & conclusions

TARGOVAX AIMS TO ACTIVATE THE PATIENT'S OWN IMMUNE SYSTEM TO FIGHT CANCER

TARGOVAX HAS TWO CLINICAL STAGE IMMUNE ACTIVATOR PROGRAMS

ONCOS

Oncolytic virus

o Genetically armed adenovirus

- o Turns cold tumors hot
- Single agent phase I completed
- \circ 4 ongoing combination trials

Activates the immune system

Triggers patientspecific responses

TG Neoantigen vaccine

- Shared mutant RAS neoantigen therapeutic cancer vaccine
- Triggers T-cell responses to oncogenic RAS driver mutations
- 32 patient phase I/II trial completed

No need for individualization

targ**o**vax

A vaccine approach to target mutant RAS

- 3. TG vaccine clinical data
- 4. Summary & conclusions

THE RAS GENE IS MUTATED IN 25-30% OF ALL CANCERS INCLUDING 90% OF PANCREATIC AND 40% OF COLORECTAL CANCERS

- RAS is the most frequently occurring driver mutation
- RAS is a clinically validated shared neoantigen
- Mutant RAS has potential as a future "genetic marker" indication

Fernandez-Medarde; RAS in Cancer and Developmental Diseases; Genes & Cancer. 2011;2(3)

RAS IS POTENTIALLY AN EXCELLENT TARGET FOR A SHARED NEOANTIGEN CANCER VACCINE APPROACH

MUTANT RAS T-CELLS CAN FORM SPONTANEOUSLY IN PATIENTS, AND RECOGNIZE AND KILL TUMOR CELLS

Rosenberg, A. et. al, (2016), New England Journal of Medicine: T-cell transfer therapy targeting mutant KRAS in cancer

Endogenous CD8+ tumor-infiltrating lymphocytes (TIL) recognizing the G12D RAS mutation were isolated from a colorectal cancer patient

The G12D **mutRAS CD8+ T-cells** were **expanded** *ex vivo* and **transfused back** into the patient (single infusion of 1.48x10¹¹ cells)

Key results

- The patient had **7 lung metastases** that all had **objective regressions** (pictured on right)
- One lesion (#3) progressed after 9 months of therapy, due to loss of the HLA locus
- Proof-of-concept for spontaneous T-cell response to mutant RAS in patients

TARGOVAX TG VACCINE IS A PEPTIDE COCKTAIL DESIGNED TO INDUCE T-CELL RESPONSES TO RAS DRIVER MUTATIONS

THE TG PEPTIDE COCKTAIL COVERS ~99% OF ALL CODON 12 AND 13 RAS MUTATIONS

Oncogenic codon 12 & 13 RAS mutations

1 12 13 MTEYKLVVVGAGGVGKSALTIQLIQ

Wild-type RAS amino acid sequence, with mutation sites in red

TG product characteristics

- Two clinical stage products
 - TG01: 7 peptides covering ~99% of RAS mutations in pancreatic cancer
 - TG02: 8 peptides covering ~99% of mutations in NSCLC and CRC
- Covers all 3 RAS family isoforms (K, N, & H)
- Long peptides (17mer) generating both CD4+ and CD8+ responses
- Promiscuous HLA class II binders, covering all HLA DR, DP and DQ epitopes
- All possible class I mutRAS epitopes covered within sequences (after antigen processing)

TG vaccine clinical data

4. Summary & conclusions

TG CLINICAL PROGRAM OVERVIEW

TG CLINICAL PROGRAM OVERVIEW

TG VACCINATION INDUCED CD4+ AND CD8+ MUTANT RAS T-CELL RESPONSES HAS BEEN VALIDATED IN PATIENTS

mutRAS specific CD4+ T-cells isolated from vaccinated patient

 CD4+ T-cell clone lyse cancer cells isolated from the same patient (*in vitro* cytotoxicity assay)

mutRAS specific CD8+ T-cells isolated from vaccinated patient

 CD8+ T-cell clone lyse cancer cells isolated rom the same patient (*in vitro* cytotoxicity assay)

% CD8+ T-cell clone cytotoxicity

mutRAS specific T-cell clones identified both in blood and tumor

 T-cell clone matching the patient's mutation (G12R) was found in tumor biopsy

Flow cytometric analysis (FACS) showing same clonality of T-cells from PBMC and tumor

T-cells specific for other RAS mutations than 12R were found in PBMC, but not in tumor

IMPROVED SURVIVAL FOR MUTRAS IMMUNE RESPONDERS OBSERVED IN ADVANCED PANCREATIC CANCER PATIENTS

Clinical study in advanced pancreatic cancer (36 patients); Cocktail of 4 (of 7) TG01 peptides

- 19 of 36 (52%) patients had mutRAS immune response
 - Immune response measured as mutRAS specific skin DTH test, and mutRAS specific T cell proliferation in blood
- 3x longer median survival for responders
 - 144 days for immune-responders (n=19)
 - 48 days for non-responders (n=17)

PHASE I MONOTHERAPY SURVIVAL DATA

TG VACCINATION SHOWED 20% 10 YEAR SURVIVAL IN RESECTED PANCREATIC CANCER

10 year survival in historical TG trials in resected pancreatic cancer¹ n=20, resected patients from two clinical trials, TG monotherapy

TG CLINICAL PROGRAM OVERVIEW

TG01 – RESECTED PANCREAS STUDY SCHEMA

PHASE I/II TRIAL COMBINING TG01 WITH ADJUVANT GEMCITABINE, 32 PATIENTS

Patient population	Resected adenocarcinoma of the pancreas and candidates for adjuvant chemotherapy	Treatment	TG01 / GM-CSF (up to 2 years) Gemcitabine (6 cycles)
Objective	Assess safety, mutant RAS immune response and clinical efficacy	Study design	Single arm, open label with safety lead-in 2 cohorts with different dosing regimens

TG01 RESECTED PANCREATIC CANCER PHASE I/II TRIAL DESIGN AND DOSING COHORTS

	Number of	Gemcitabine	Vacc	Vaccinations during phase		Completion rate
	vaccinations	regimen	Induction	Treatment	Maintenance	
First cohort	Up to 27	6 cycles starting by wk12	~	\checkmark	✓	18 vaccinations on average
19 patients full regimen	post surgery	6 3 wks	12 Bi-weekly	up to 9 up to 2 yrs	1/19pts completed, 18 withdrawn before 2 years	
Second cohort	Up to 15	6 cycles	✓	×	\checkmark	12 vaccinations on average
13 patients optimized regimen	post surgery	5 5 wks	-	up to 10 up to 2 yrs	3/13pts completed, 10 withdrawn before 2 years	
Treatment schedule						
Induction phase TG01 only Ge	Treatment pha emcitabine +/- 1	se G01		Mainte TG	nance phase 601 only	
6-8 weeks	6 months			16	months	

2 years

30/32 PATIENTS IN THE TRIAL WERE CONFIRMED AS MUTANT RAS, WITH MOST SHOWING PRESENCE OF MUTIPLE POINT MUTATIONS

1 RAS status determined by tumor biopsy and/or cfDNA

2 Eleven patients were not screened for individual mutationsCompany data, unpublished

targovax

TOP-LINE DATA SUMMARY TG01 + GEMCITABINE AS ADJUVANT COMBINATION TREATMENT IN RESECTED PANCREATIC CANCER

Median disease free

survival (mPFS), months

2

RAS-specific immune

activation

1

22

TG01 is well-tolerated - improved dosing regimen in second cohort

Median overall survival

(mOS), months

Parameters	1 st Cohort (n=19)	2 nd Cohort (n=13)	Overall (N=32)
Immune responder*	18 (95 %)	12 (92 %)	30 (94 %)
DTH Positive	18 (95 %)	8 (62 %)	26 (81 %)
(skin hypersensitivity test)	, <i>,</i>	. /	· ,
mutRAS Specific T-cells (PBMC proliferation assay)	14 (74 %)	12 (92 %)	26 (81 %)

* Immune responder defined as positive DTH test or PBMC proliferation assay for at least one time point

1 ROBUST LEVELS OF DTH AND PBMC MUTANT RAS IMMUNE RESPONSES BUILDING UP OVER TIME

DTH responses over time

% of analyzed patients with positive DTH at each time point

PBMC responses over time

% of analyzed patients with positive PBMC at each time point

Measured 4/8 weeks after last cycle of chemotherapy ** EoS time point varies between patients Baseline response prior to first vaccination (week 1), not defined as positive immune response to TG Company data, unpublished targovax

2 DISEASE FREE SURVIVAL (DFS) KAPLAN-MEIER PLOT

Time to disease-free survival (months)

Censored= No progression on latest scan collected

DFS was measured from surgery

KAPLAN-MEIER SURVIVAL PLOT FOR ALL 32 PATIENTSSIGNAL OF CLINICAL BENEFIT OF TG VACCINATION

targ

Palmer et al. Br J Cancer, 2020

26

TG01 RESECTED PANCREAS TRIAL - SWIMMER PLOT 3 SHOWING INDIVIDUAL PATIENT OUTCOMES

Palmer et al. Br J Cancer, 2020

Summary & conclusions

SUMMARY – TG MUTANT RAS VACCINE

Targets all RAS mutations with one product

- Covers 99% of codon 12 and 13 oncogenic RAS mutations
- Patients frequently have **multiple RAS mutation clones** present

Promising immune response and efficacy data

- Signal of survival benefit in resected pancreatic cancer
- Mutant RAS T-cell responses in >90% of vaccinated patients
- O Clearance of mutant RAS clones in cfDNA

Potential as genetic marker "pan-RAS" vaccine

- Mutant RAS found in **25-30% of all solid tumors**
- First examples of genetic marker approvals already given by FDA
- Excellent tolerability, with broad potential for IO and chemo combinations

Available for partnering

- Combination trials, novel adjuvants and delivery strategies
- Available for partnering, IOVaxis Therapeutics has option to China rights

ACTIVATING THE PATIENT'S IMMUNE SYSTEM TO FIGHT CANCER

Strong single agent data Re-activation of anti-PD1 resistant tumors Rich news flow 2019-2020

Mutant RAS vaccine

Innovative pipeline

Robust immune activation Signal of clinical benefit Available for partnering and collaborations Next generation viruses in pre-clinical testing Novel RAS targeting concepts