

Memorial Sloan Kettering Cancer Center

Melanoma and oncolytic adenoviruses

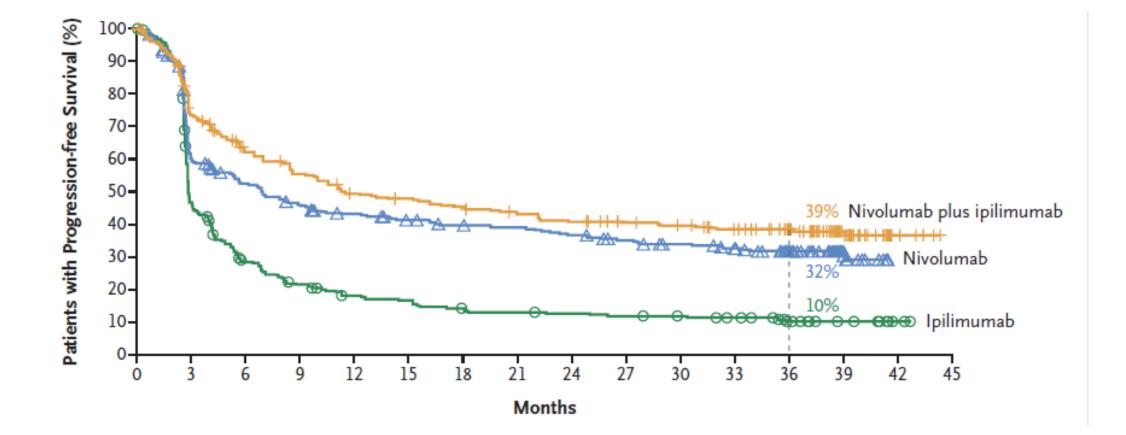
Alexander Shoushtari, MD

Assistant Attending Physician Melanoma and Immunotherapeutics Service Memorial Sloan Kettering Cancer Center New York, NY

November 15, 2019

Immunotherapy has revolutionized the treatment of malignant melanoma

Real world example – Patient in an ipilimumab checkpoint inhibitor trial



Prior to starting ipilimumab

One year of ipilimumab treatment

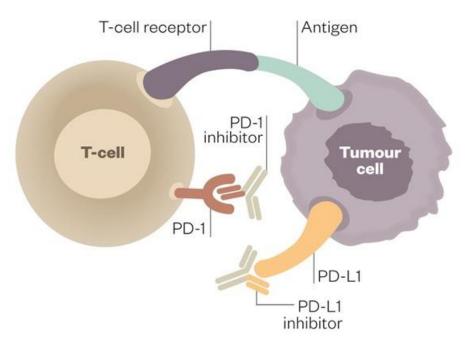
PD-1 checkpoints have surpassed CTLA-4, and become the cornerstone of melanoma treatment

PD-1 checkpoint-based therapy in melanoma

Two main checkpoint inhibitor (CPI) treatment choices

- Anti-PD-1 monotherapy: Pembrolizumab or Nivolumab
- Anti-PD-1 + anti-CTLA4 combination therapy: Nivolumab plus Ipilimumab

45 - 60% objective response rate


• Responses can last for years, but not forever

Overactive immune system leads to immune-related adverse events (irAEs)

- Diarrhea / Colitis
- Liver inflammation
- Pneumonitis
- Thyroid, Pituitary dysfunction

irAE rate varies by mono- versus combination CPI therapy

- CPI monotherapy: 1 in 4 require steroids
- CPI combination: 3 in 4 require steroids

However, most patients still become resistant to anti-PD-1 treatment

Standard options post PD-1

Non-standard options post PD-1

After PD-1 monotherapy

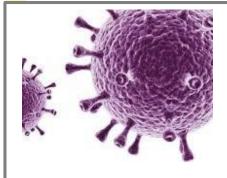
- BRAF-MEK, if V600 mutant
- Nivolumab plus ipilimumab
- o Ipilimumab alone
- Cytotoxic chemotherapy
- T-VEC if injectable

After PD-1/CTLA4 combination therapy

- o BRAF-MEK, if V600 mutant
- Cytotoxic chemotherapy
- T-VEC if injectable

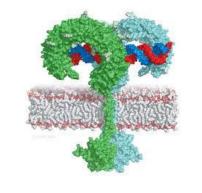
If local progression only

- Surgery
- Radiation therapy

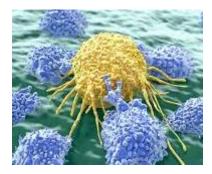

Clinical Trials (selected)

- PD-1 combination with:
 - Oncolytic virus
 - TLR9 agonist
 - Neoantigen vaccines
 - HDAC inhibitor
 - OX40 agonist
 - LAG-3 inhibitor
- Tumor Infiltrating Lymphocyte (TIL) trials

Off-label uses


- BRAF + MEK + PD-1
- T-VEC + PD-1 inhibitor
- Radiation + PD-1 +/- Ipilimumab

Promising experimental therapies available for PD-1 resistant patients

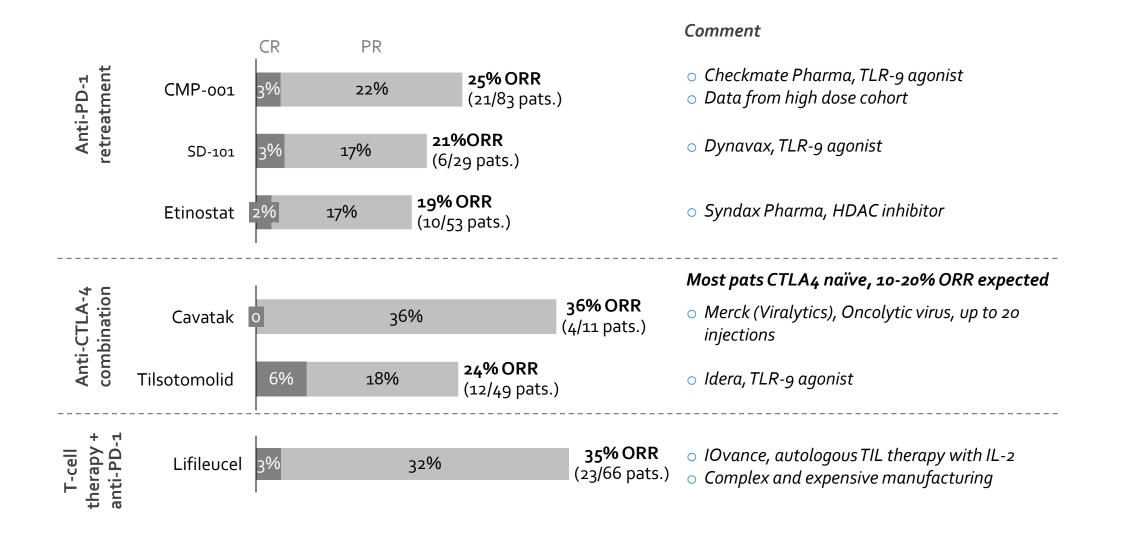

Oncolytic viruses

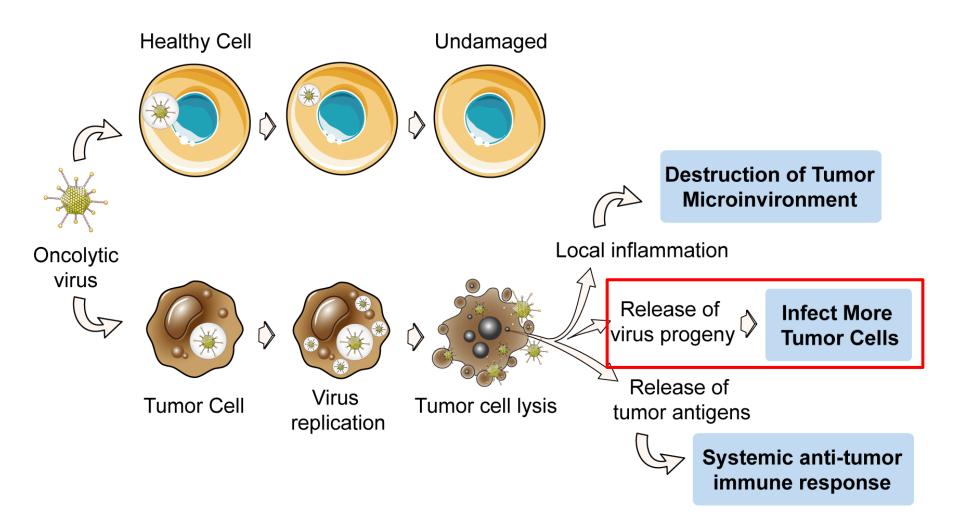
- Trigger oncolysis and inflammatory response
- Turn cold tumors hot
- Trials ongoing in combination with PD-1 and CTLA-4

TLR-9 agonists

- Stimulate innate immune response via TLR-9 signaling
- Trials ongoing in combination with PD-1 and CTLA4

TIL therapy


- Autologous T-cells harvested from the patient's tumor
- Combination trials ongoing with systemic immune activators (eg IL2)
- Potentially efficatious, but significant cost and logistics hurdles


Neoantigen vaccines

- Trigger T-cell responses to shared or personalized neoantigens
- Provide tumor targets to T-cells
- Trials ongoing with PD-1

Response rates reported in anti-PD-1 refractory melanoma phase I / II trials

How oncolytic viruses work

Overview of the most common oncolytic virus classes

Size	Virus type	Description	Pros	Cons	
	Vaccinia virus (130-280kb)	Large enveloped DNA viruses, with ability to carry long payload DNA sequences	Well known vector, large DNA payload capacity, extra-nuclear replication	Complex CMC, large size, slow replication	
	Herpes virus (120-200kb)	Large enveloped DNA viruses, with ability to carry long payload DNA sequences	Only approved OV virus class, highest DNA payload capacity	Weak innate immune response, long latency, long/permanent infec-tivity, complex CMC	
	Adenovirus (35-40kb)	Mid-size non-enveloped DNA viruses, with ability to carry some payload DNA sequences	Well tolerated, TLR9 agonist, innate immune activator, payload DNA	Not suitable for IV in naked form, less payload DNA than herpes/vaccinia	
	Small RNA viruses (5-30kb)	Small RNA genome, usually non- enveloped, limited ability to carry transgenes (except VSV)	High oncolytic potency, rapid replication, strong innate response, simple CMC	Safety issues seen with too potent lysis (VSV virus), limited platform versatility	

Immunogenicity

There is a range of oncolytic viruses in clinical development

Company	Asset/ Program	МоА	Highest Phase
AMGEN H	Imlygic	HSV with GM-CSF transgene, IT only	Approved 2015 as mono Phase III PD-1 combo
S MSD R	Cavatak	Coxsackievirus, non gene modified, IT focus, IV and IP trial ongoing	Phase II
ONAtrix	DNX-2401	Chimeric Ad5/3, no transgene, IT and intra-arterial	Phase II
targovax A	ONCOS-102	Chimeric Ad5/3 with GM-CSF transgene, IT and IP administration	Phase II
O Cold Genesys	CG0070	Ad5 with GM-CSF transgene, intravesical	Phase II
NCOLYTICS R	Reolysin	Reovirus, non gene modified, IV only	Phase II
PSIOXUS A	Enadenotucirev	Chimeric Ad5, no transgene, IV only	Phase I/II
🔆 Replimune' 🛛 💾	RP1	HSV with GM-CSF, GALV, and ipilimumab transgenes, IT only	Phase I/II
LOK O N A	LOAd703	Chimeric Ad5/35 with TMZ-CD4oL and 4-1BBL transgenes, IT only	Phase I/II
🗷 VYRIAD 🛛 🦷	Voyager V1	VSV virus with NIS and human interferon beta transgenes, IV only	Phase I
WESTERN ONCOLYTICS	Ad-MAGEA3	Maraba virus with MAGEA3 transgene, IV and IT	Phase I
Boehringer Ingelheim	VSV-GP	Chimeric VSV virus, IV only	Pre-clinical
	WO-12	Vaccinia virus armed with TRIF and HPGD transgenes, IV only	Pre-clinical
T transgene	Invir.IO	Vaccinia virus platform armed with CTLA-4 ++, solid tumors	Pre-clinical
Soncorus H	oHSV	Herpes virus with multiple transgenes (PD-1, CTLA4 ++), IT only	Pre-clinical
A Adenovirus	H Herpes virus	V Vaccinia virus R RNA virus	

A pilot study of engineered adenovirus ONCOS-102 in combination with pembrolizumab in checkpoint inhibitor refractory advanced or unresectable melanoma

Contributing authors: Alexander Shoushtari Anthony J. Olszanski Thomas J. Hornyak Jedd Wolchok Sylvia Vetrhus Karianne Risberg Handeland Lukasz Kuryk Magnus Jäderberg

#SITC2019

Memorial Sloan Kettering Cancer Center Fox Chace Cancer Center University of Maryland Greenebaum Cancer Center Memorial Sloan Kettering Cancer Center Targovax ASA Targovax ASA Targovax Oy Targovax ASA

Dr. Alexander Shoushtari Memorial Sloan Kettering Cancer Center

Society for Immunotherapy of Cancer

SITC

Disclosures

Advisory boards

- Bristol Myers Squibb
- Immunocore
- Castle Biosciences

Clinical Trial Support

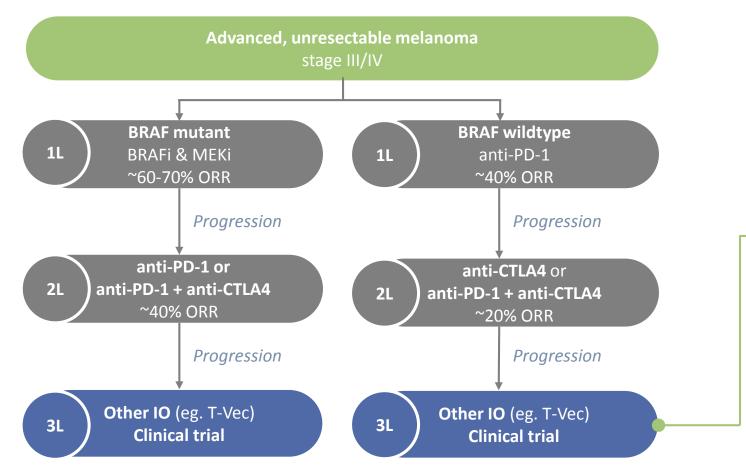
- Targovax
- Bristol Myers Squibb
- Immunocore
- Xcovery
- AstraZeneca

Outline

Background and Study Design

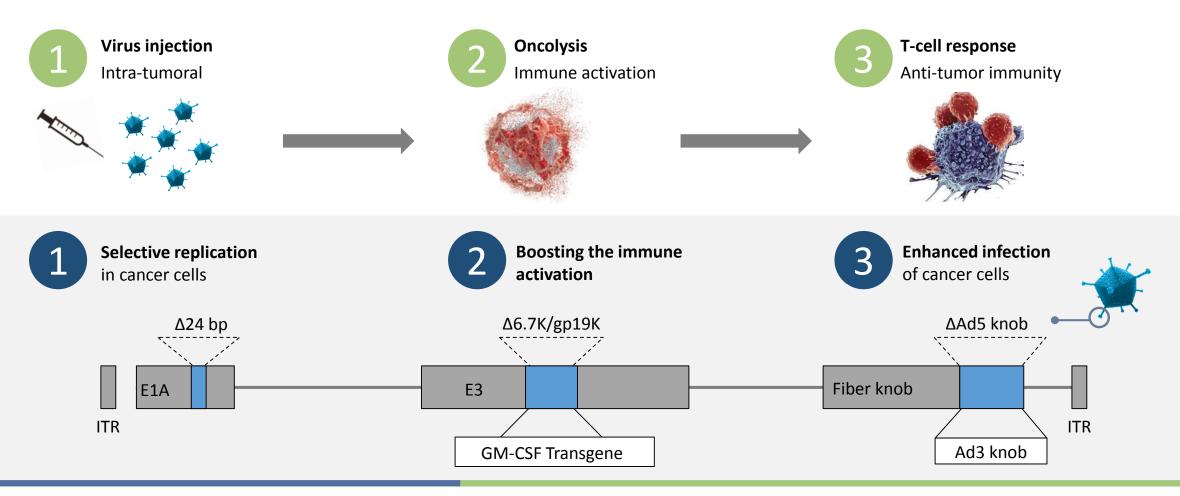
Safety of ONCOS-102 + pembrolizumab

Clinical Responses in Part 1



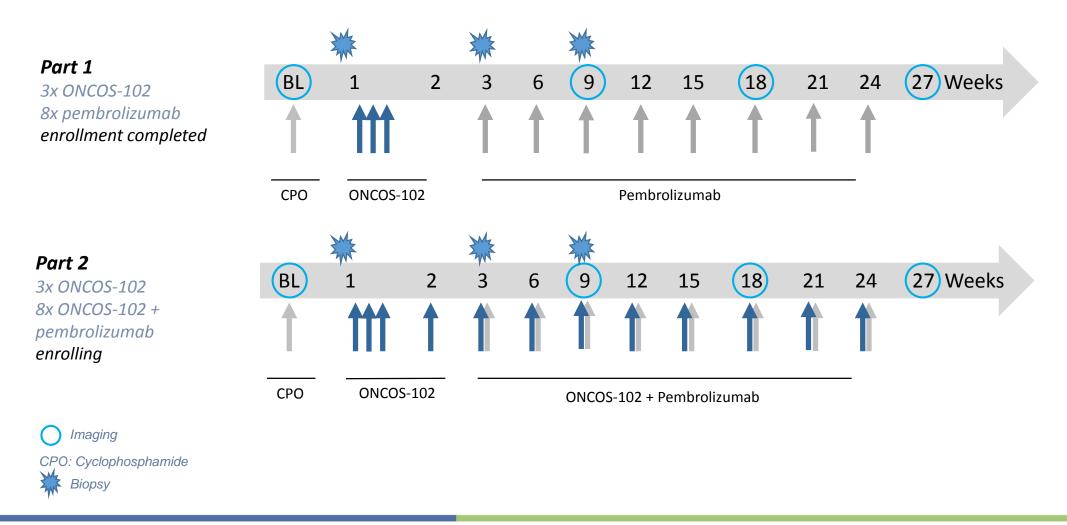
Systemic and Local Immune Responses in Part 1

Limited treatment options for anti PD-1 refractory melanoma



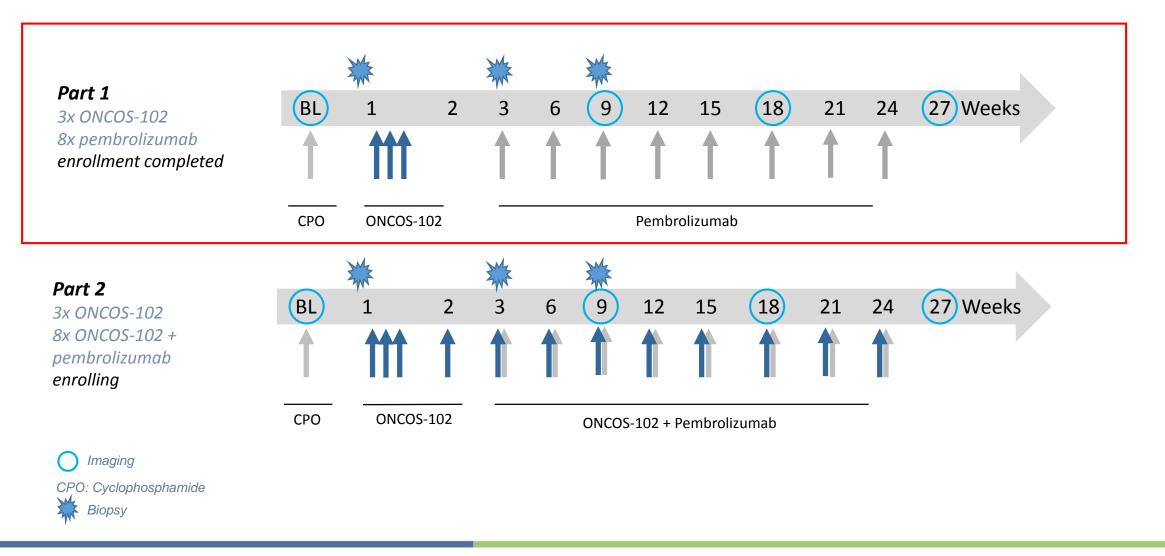
anti-PD-1 refractory population No / few treatment alternatives, high unmet medical need Poor response rates, typically ORR < 20% Rationale for priming agent / oncolytic virus in combination with anti-PD-1

34th Annual Meeting & Pre-Conference Programs



ONCOS-102 is an oncolytic adenovirus serotype 5 armed with a GM-CSF transgene

Study Design



34th Annual Meeting & Pre-Conference Programs

Study Design

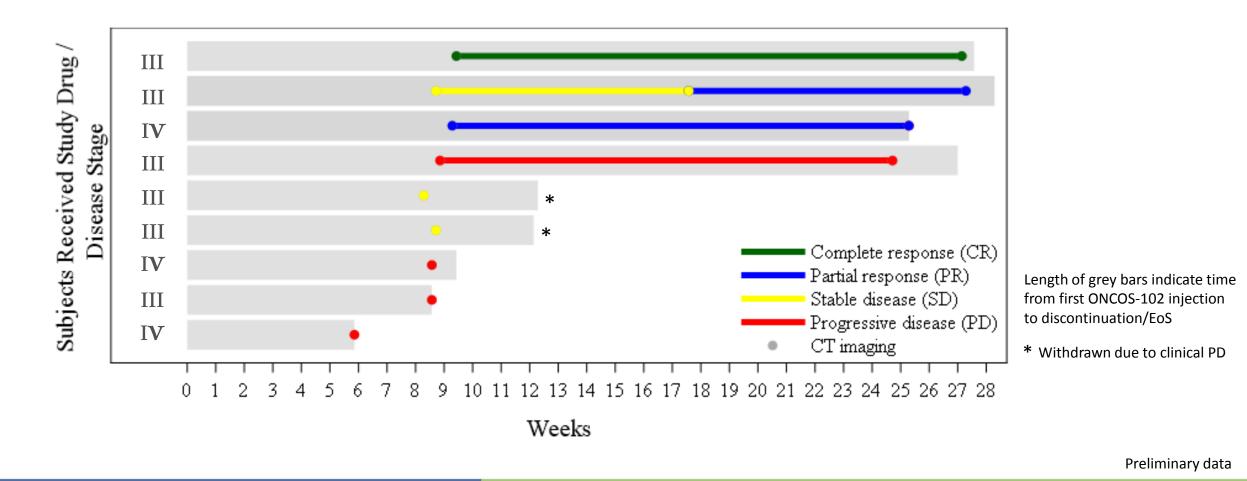
34th Annual Meeting & Pre-Conference Programs

Demographics and prior treatment

Parameters	Number of patients
	(n=9)
Age (Y) median (range)	73 (40 – 87)
Gender, n Female Male	4 5
Histological type Cutaneous Acral	8 1
Stage at enrollment III IV	6 3

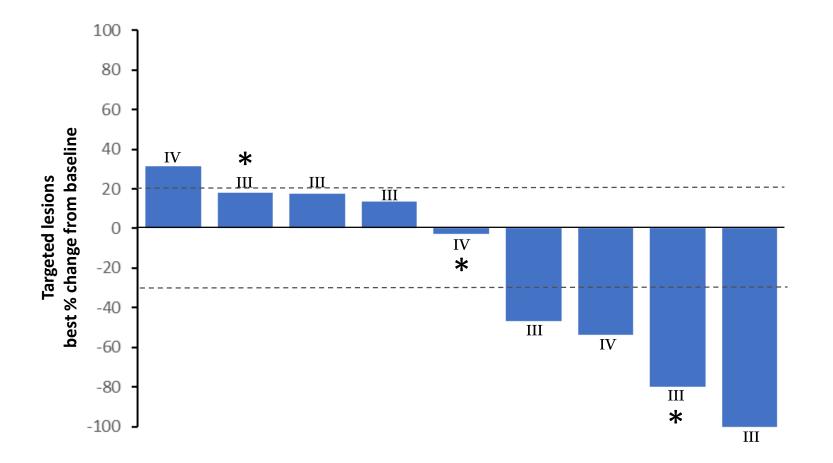
Prior therapy	Number of patients (n=9)
Systemic Therapy	
anti-PD-1 checkpoint inhibitor Pembrolizumab and/or Nivolumab	9
anti-CTLA4 checkpoint inhibitor Ipilimumab	4
Oncolytic virus Talimogene-laherparepvec	3
BRAF/MEK inhibitors Dabrafenib + Trametinib	2
TLR9 agonist CMP-001 (investigational)	1
Interleukin-2 immunotherapy	1
Surgery	7
Radiotherapy	1
Chemotherapy	1

Preliminary data


Adverse Events *

Adverse Event Prefered term	No. of events	No. of patients	CTCAE grade	Relationship to study drug	
Chills	7	5	1, 2		
Myalgia	6	3	1		
Pyrexia	5	3	1, 2		
Diarrhoea	4	3	1		
Nausea	3	3	1		
Alanine aminotransferase increased	2	2	1		
Fatigue	2	2	1, 2	ONCOS-102	
Vomiting	2	2	1		
Rash maculo-papular	2	2	1		
Injection site pain	2	1	1		
Injection site swelling	1	1	2		
Peripheral oedema	1	1	2		
Infectious colitis	1	1	3 **		
Productive cough	1	1	2		
Haemolytic anemia	1	1	3 **	Pembrolizumab	
Diarrhoea	2	2	1,3 **		
Diabetic ketoacidosis	1	1	4 **	ONCOS-102 and	
Type 1 diabetes mellitus	1	1	4 **	pembrolizumab	

Preliminary data



Objective Response Rate of 33% (3 of 9 pts) RECIST 1.1

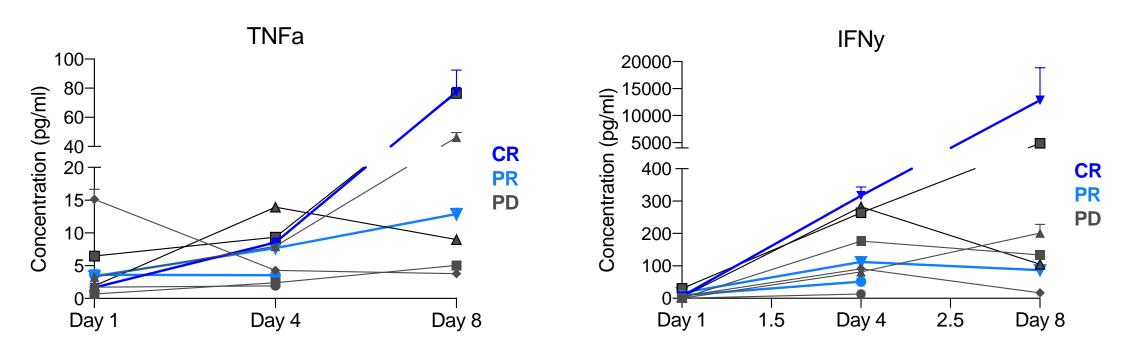
Targeted lesions: best % change in tumor burden from baseline

Non-target Progression of Disease

Preliminary data

Example of response: Patient with CR

Preliminary data

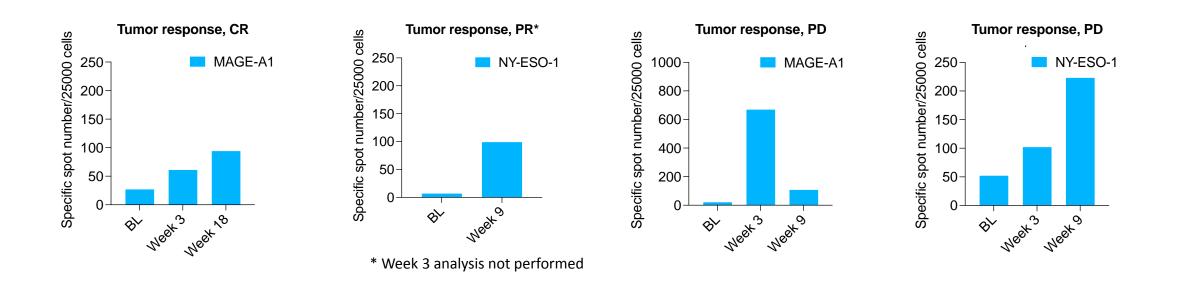

Example of response: Patient with PR

Tumor response, 2 of 2 injected lesions Week 27 (EoS) Baseline Week 9 Week 18 Week 3 Lesion 1 of 2 30,11,4918 5 47 10 20 5/29/19 #1 1.5 Lesion 2 of 2 Progression on 3X ONCOS-102 3X ONCOS-102 & 3X ONCOS-102 & 3X ONCOS-102 & pembrolizumab 2x pembrolizumab 5x pembrolizumab 8x pembrolizumab only

Patient characteristics				
Tumor stage at enrolment:	IV	Prior therapies:	Surgery	
	T4a, N1b, M1		Talimogene-laherparepvec (T-vec) Ipilimumab	
RECIST 1.1:	PR, week 9-27		Pembrolizumab	

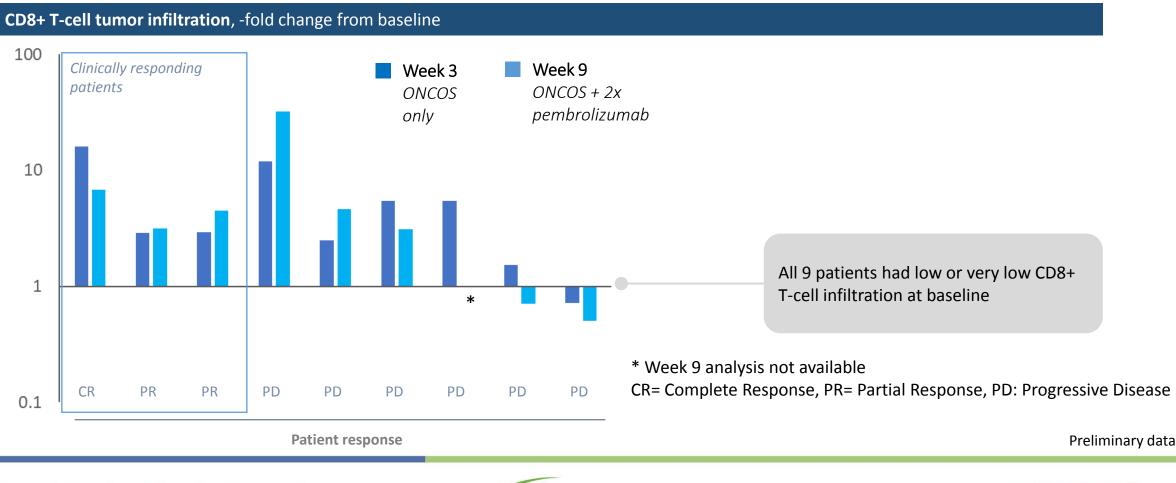
Upregulation of proinflammatory cytokines in all patients

Systemic expression of proinflammatory cytokines



Preliminary data

Systemic increase in tumor targeting T-Cells


IFNy ELISPOT, spot number/25,000 cells

Preliminary data

Increased T-cell infiltration in ONCOS-102 injected tumors is necessary but not sufficient for response

34th Annual Meeting & Pre-Conference Programs

Conclusions

Sequential ONCOS-102 and pembrolizumab treatment in advanced anti-PD-1 refractory melanoma patients showed:

- Acceptable safety profile; most common ONCOS-102 related adverse events were fevers, chills, and myalgias
- ORR: 3 of 9 patients (RECIST 1.1)
- Upregulation of proinflammatory cytokines
- Systemic development of anti-tumor immune responses
- Increased infiltration of CD8+ T cells in ONCOS-102 injected tumors

Part 2 of this pilot study is currently enrolling an additional 12 patients to receive 12 injections of ONCOS-102 with pembrolizumab

Acknowledgements

Patients and their family members

Memorial Sloan Kettering Cancer Center

Philip Wong Taha Merghoub Nana Prempeh Keteku Brooke Freeman Mimma Errante Paul Chapman Michael Postow Margaret Callahan Parisa Momtaz Charlotte Ariyan Allison Betof Warner Shalom Sabwa Olivia Gibson

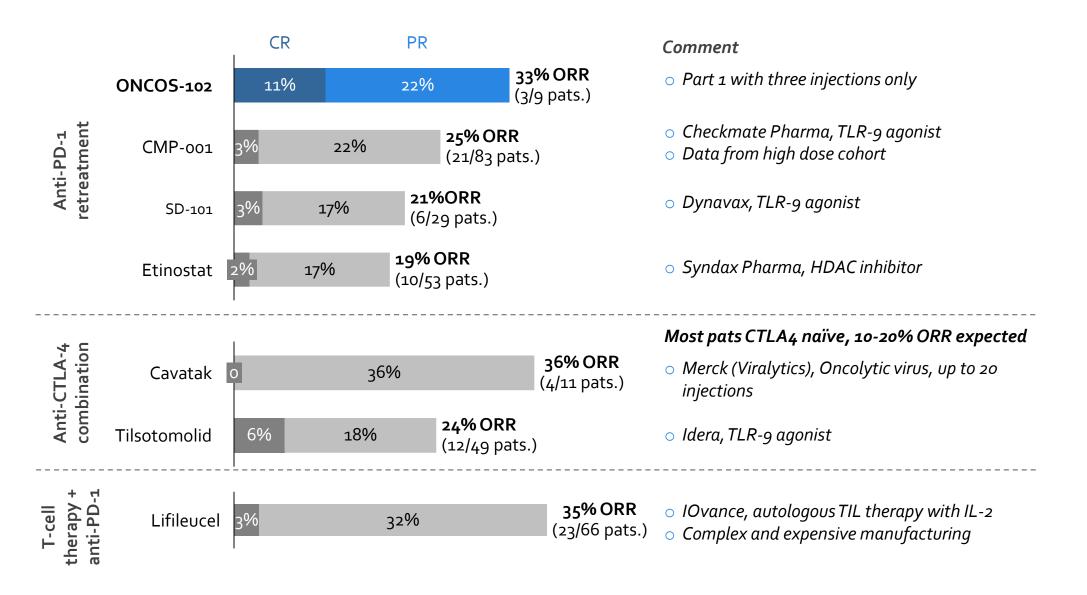
Fox Chase Cancer Center

Linda Thibodeau

University of Maryland Greenebaum Cancer Center

Petr Hausner Cheryl Young targovax

Targovax


Anne-Sophie Møller Trine Jensen Gjertsen

34th Annual Meeting & Pre-Conference Programs

ONCOS-102 + Keytruda data in context of published anti-PD-1 refractory melanoma data

Trials and combinations to watch in melanoma

	Example compounds	Trials to watch
Novel immune checkpoint inhibitors	LAG-3, TIM-3, TIGIT	 LAG-3 relatimab in combination with Nivolumab in stage IV IO naïve melanoma TIM-3 mono and in combination with anti-PD-1 in IO pretreated stage IV melanoma
Oncolytic viruses	T-VEC, Cavatak, ONCOS-102	 T-VEC phase III 1L combination with Keytruda (Masterkey-265) Cavatak phase II 1L combination with Keytruda ONCOS-102 phase I in PD-1 refractory in combination with Keytruda
Immune stimulatory agents	TLR9, CD40, OX40, IL-2	 CMP-001 in PD-1 refractory, phase II combination with Keytruda Tilsotolimod in PD-1 refractory, phase III combination with Yervoy Bempegaldesleukin + nivolumab in 1L, phase III (CA045-001)
Adoptive T-cell therapy	Lifileucel	• TIL therapy PD-1 refractory, pivotal phase II trial in combination with IL-2
BRAFi/MEKi	Mekinist, Tafinlar	MEKi/BRAFi in combination with pembrolizumab in 1L BRAF V600E melanoma

So...what's next in melanoma?

- Frontline trials
- Post PD-1 trials
- Neoadjuvant Approaches
- Melanoma as a crystal ball for "IO"
 - Newest ideas
 - Benchmarks
 - Highest unmet need

Frontline Trials in Melanoma: Big Ones

- Randomized, PD-1 +/- XYZ
 - LAG-3: Nivolumab +/- Relatlimab (NCT03470922)
 - T-VEC: Pembrolizumab +/- TVEC (NCT02263508)
 - IL-2 directed: Nivolumab +/- BEMPEG (NCTo3635983)
 - VEGF: Pembrolizumab +/- Lenvatinib (NCT03820986)
- BRAF-MEK +/- PD-1: Enco-Bini-Spartalizumab (NCT02967692)

Frontline Trials in Melanoma: Big Ones

- Large trials, 500-700+ patients
- What do we need for a new standard?
 - OS, not just PFS and ORR
 - Tolerability
 - Schedule / ease of use
- We are a few years away from making a new frontline standard
- Existing frontline treatment is tolerable, relatively easy, and can be durable

Post PD-1 Trials: Trends

- Critical need to develop new treatments, but it's getting harder to do it well
- Rigidly defining "PD-1 resistance"
- Slowly relaxing prior toxicity requirements (...too slowly)
- Highly selective trials (e.g. lifileucel)
- The specter of ipilimumab: 20% ORR, durability
- Single arm ORR or Randomized Trials

Neoadjuvant Trials: Pros and Cons

Pros

- Faster readout than frontline
- Easy access to tissue for mechanistic and biomarker studies
- Patients (usually) like these, as long as there is no placebo
- FDA appears more willing than before to consider "major response" clinically meaningful

Cons

- A relative minority of cutaneous melanoma presents with bulky stage 3 disease
- Path CR is still a relative leap of faith
- Physicians are already doing this with nivo 3 + ipi 1

Neoadjuvant Trials: Selected Candidates

• All with PD-1 backbone

- BRAF-MEK
- Checkpoint combinations: CTLA-4, LAG-3
- Oncolytic Viruses:
- TLR9 Agonists:

e.q. T-VEC, CAVATAC

e.g. CMP-001

Melanoma: Small Histology, but Influential

Melanoma: Small Histology, but Influential

The Pixies Nirvana (Melanoma) (NSCLC, breast)

Melanoma: Small Histology, but Influential

• We usually set trends followed by the bigger histologies

- Easily accessible tissue
- Relatively aggressive disease
- Hot (cutaneous) vs cold (uveal) vs mixed (mucosal) models
- Patient buy-in for biomarker heavy trials

What's Next? Other Approaches

- Microbiome manipulation (e.g. Seres-401)
- CD3 fusion protein constructs (e.g. tebentafusp against gp100)
- Personalized neoantigen platforms
- CAR-T baskets
- Uncoupling toxicity from efficacy: TNF antagonist coadministration

What's Next? Highest Unmet Needs

- Uveal melanoma
 - No frontline standard option
 - Tebentafusp registration trial(s), but HLA-A restricted
- PD-1 Refractory Cutaneous Melanoma
 - Enriched for NRAS mutant biology
 - If any prior tox, subsequent trials are limited
- Leptomeningeal Disease / active brain mets

What Should Benchmarks be?

- Well defined "PD-1 resistant" definition
- Study that CONSORT diagram!
 - Screen failures?
 - Time to fully accrue?
- ORR and PFS only in select settings
 - Uveal melanoma responses are probably real successes
 - 2nd line cutaneous melanoma responses may not be
- Randomization, OS are still gold standards

all

