

Memorial Sloan Kettering Cancer Center

Melanoma and oncolytic adenoviruses

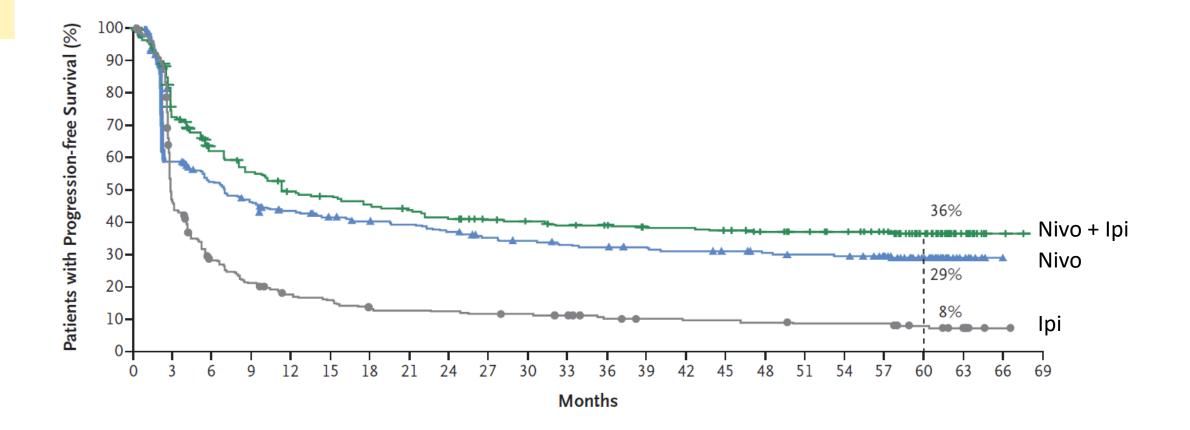
Alexander Shoushtari, MD

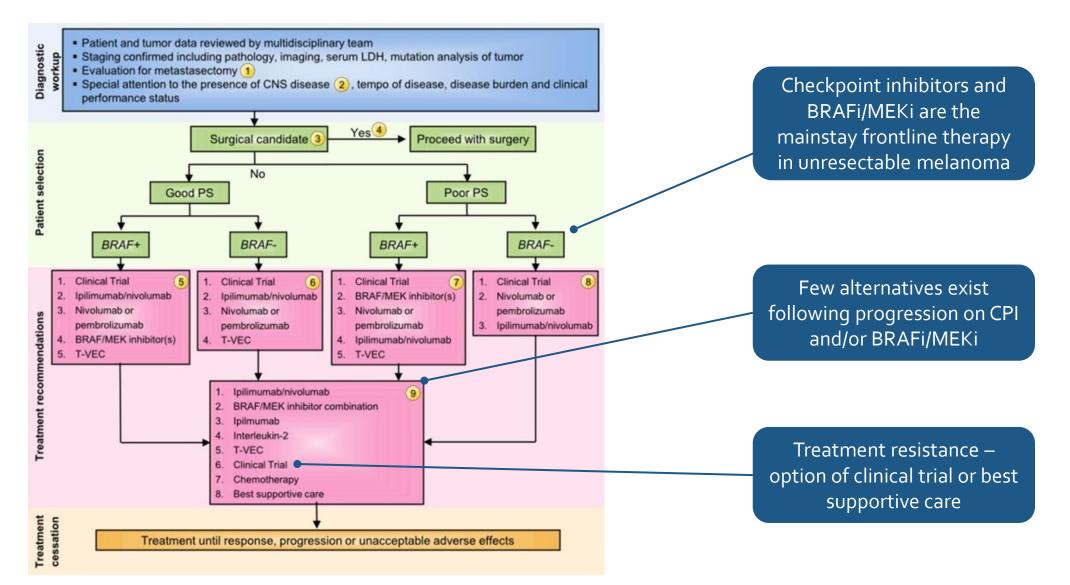
Assistant Attending Physician Melanoma and Immunotherapeutics Service Memorial Sloan Kettering Cancer Center New York, NY

February 18, 2021

Immunotherapy has revolutionized the treatment of malignant melanoma

Real world example – Patient in an ipilimumab checkpoint inhibitor trial




Prior to starting ipilimumab

One year of ipilimumab treatment

PD-1 blockade has surpassed CTLA-4, and become the cornerstone of melanoma treatment

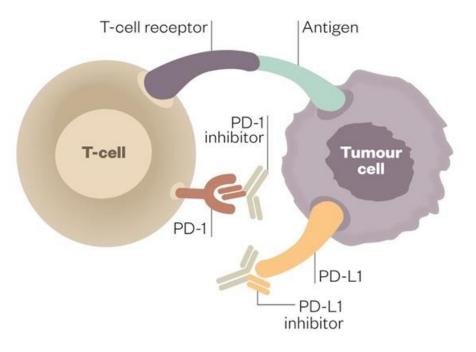
SITC treatment algorithm for late stage melanoma

PD-1 checkpoints are effective in melanoma

Two main checkpoint inhibitor (CPI) treatment choices

- Anti-PD-1 monotherapy: Pembrolizumab or Nivolumab
- Anti-PD-1 + anti-CTLA4 combination therapy: Nivolumab plus Ipilimumab

45 - 60% objective response rate


• Responses can last for years, but not forever

Overactive immune system leads to immune-related adverse events (irAEs)

- o Diarrhea / Colitis
- Liver inflammation
- Pneumonitis
- Thyroid, Pituitary dysfunction

irAE rate varies by mono- versus combination CPI therapy

- PD1 monotherapy: 1 in 4 require steroids
- PD1 + CTLA4 combination: 3 in 4 require steroids

Post PD-1/CTLA4/BRAF-MEKi progression, only experimental and off-label options are available

Standard options post PD-1

After PD-1 monotherapy

- BRAF-MEK, if V600 mutant
- Nivolumab plus ipilimumab
- o Ipilimumab alone
- Cytotoxic chemotherapy
- T-VEC if injectable

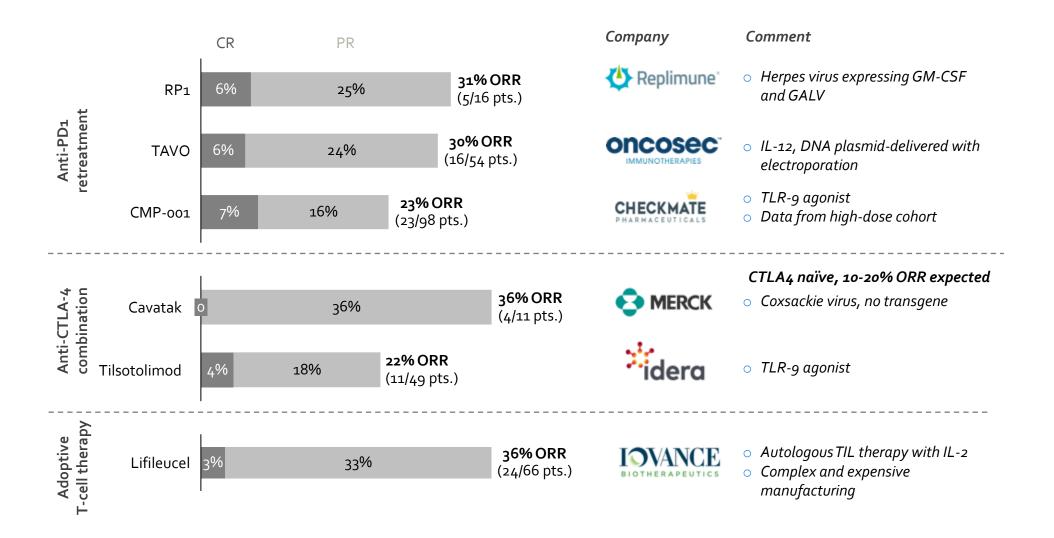
After PD-1/CTLA4 combination therapy

- BRAF-MEK, if V600 mutant
- Cytotoxic chemotherapy
- o T-VEC if injectable

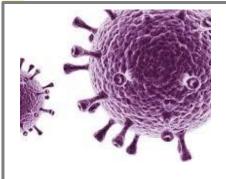
If local progression only

- Surgery
- Radiation therapy

Non-standard options post PD-1

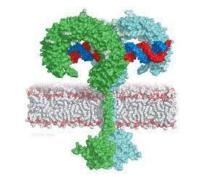

Clinical Trials (selected)

- PD-1 combination with:
 - Oncolytic virus
 - TLR9 agonist
 - LAG-3 inhibitor
 - Cytokines (IL-2, IL-12)
 - Neoantigen vaccines
 - TCR bispecifics
- Tumor Infiltrating Lymphocyte (TIL) trials

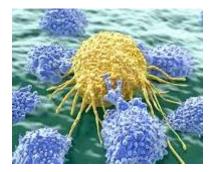

Off-label uses

- O BRAF + MEK + PD-1
- T-VEC + PD-1 inhibitor
- Radiation + PD-1 +/- Ipilimumab

Response rates reported from PD-1 checkpoint inhibitor refractory melanoma clinical trials



Promising experimental therapies available for PD-1 resistant patients

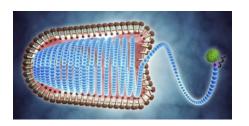

Oncolytic viruses

- Trigger oncolysis and inflammatory response via TLR-9 and other
- Reverses local immuno-suppression
- Trials ongoing in combination with PD-1 and CTLA-4

TLR-9 agonists

- Stimulate innate immune response via TLR-9 danger signaling
- Trials ongoing in combination with PD-1 and CTLA4

TIL therapy


- Autologous T-cells harvested from the patient's tumor
- Combination trials ongoing with systemic immune activators (eg IL-2)
- Potentially efficacious, but significant cost and logistics hurdles

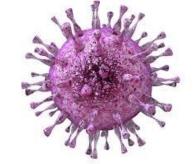
Neoantigen vaccines and TCRs

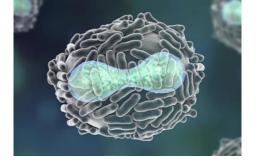
- Trigger T-cell responses to shared or personalized neoantigens
- Either personalized vaccines or shared tumor antigen approaches
- Trials ongoing with PD-1

Overview of the most common oncolytic virus classes

Small RNA viruses

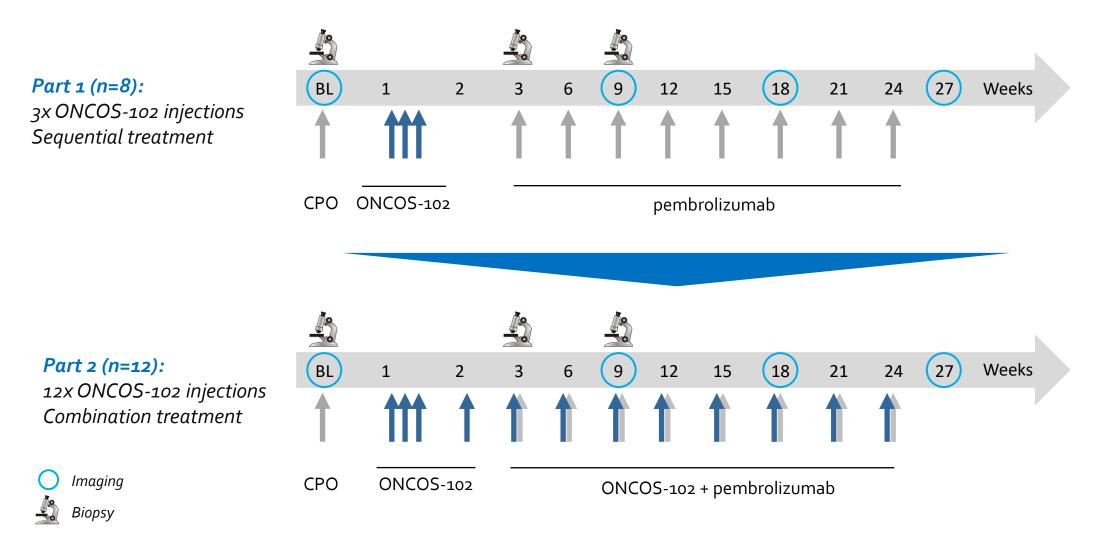
- Highly oncolytic
- Highly inflammatory




- Limited payload capacity Poor stability
- Only **sporadic evidence** of clinical efficacy

Adenovirus

- Highly inflammatory
- Versatile DNA backbone
- Less payload capacity than Herpes / Vaccinia
- Several candidates with promising early data
- Vector for several effective
 COVID-19 vaccines

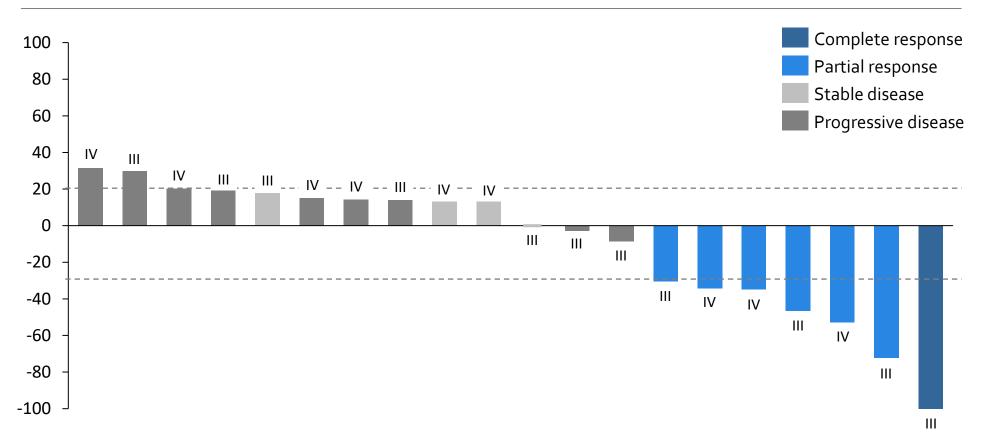

Herpes viruses

- Large payload capacity
- o Only approved virus class
- Low immunogenicity Latent infection cycle
- Mixed recent data
- o Imlygic **commercial failure**

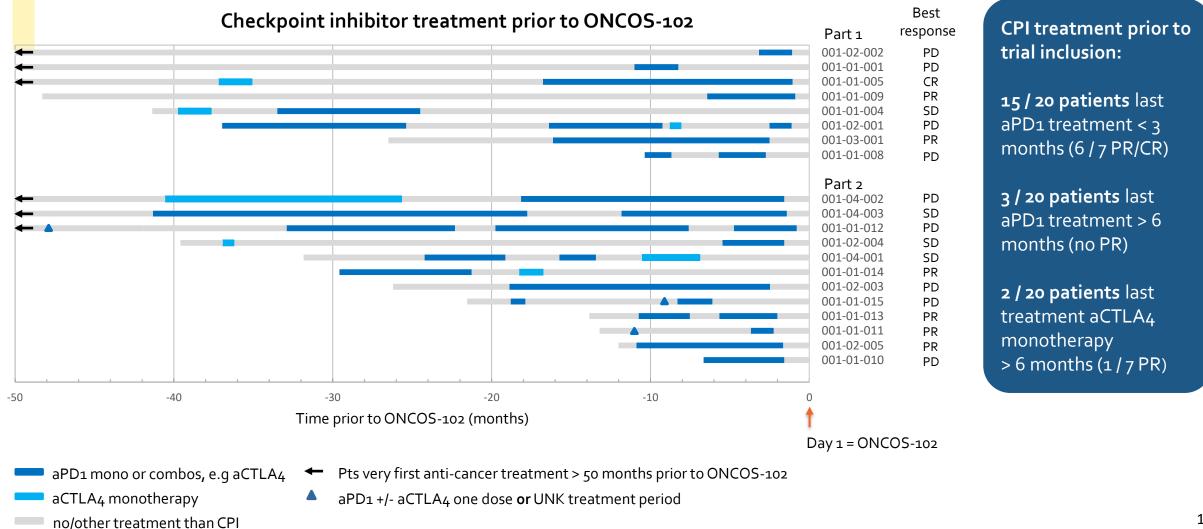
Vaccinia virus

- o Large payload capacity
- Used as vector for first, historic vaccines
- Low immunogenicity
- Large size, high complexity
- Several recent negative clinical trials

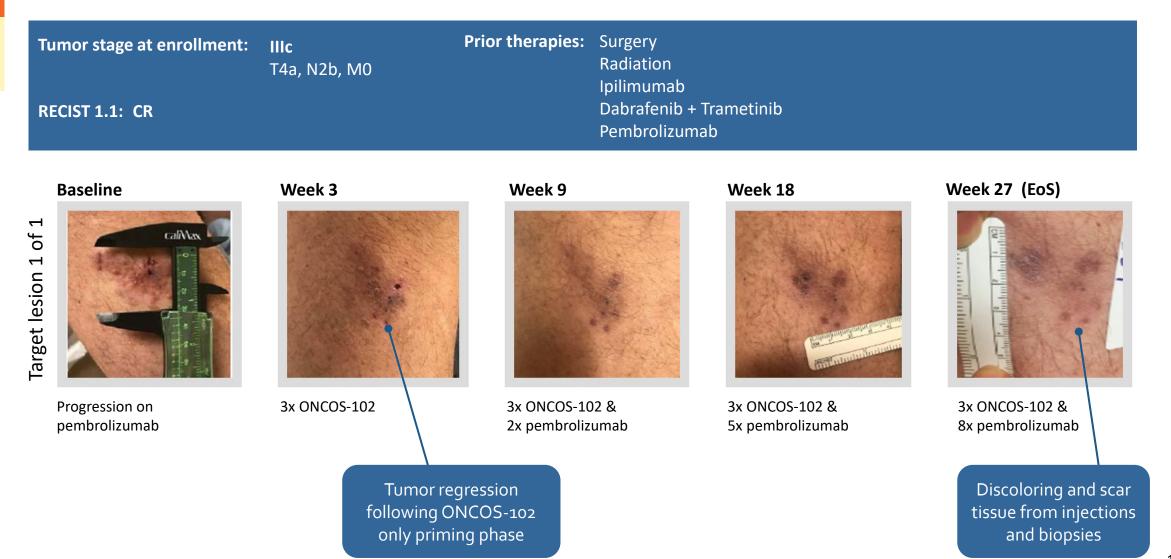
Study design of ONCOS-102 phase I trial in PD1 checkpoint-refractory melanoma


Patient and disease characteristics

Parameters	Part 1 (n=8)	Part 2 (n=12)	Total (N=20)
Age (median)	70.5y	72γ	72γ
Time from diagnosis to start of ONCOS-102 (median)	6.9у	2.9γ	4.5y
Number of treatments prior to study (average) - Surgery (average) - Treatments ex. surgery (average)	5.3 2.1 3.1	5.9 1.9 3.9	5.6 2.0 3.6
Time (months) from last anti-PD1 to study start (median)	1.8m	1.9m	1.9m
Number of prior checkpoint treatment regimens (average)	1.8	2.3	2.2
Prior CTLA-4 treatment (number of patients, %)	4 (50%)	8 (67%)	12 (60%)
Baseline number of lesions (median)	4.0	8.5	7.0
Baseline tumor burden RECIST1.1 (mm, median)	37.5	73.5	55.0
Tumor stage at enrollment - Stage III - Stage IV	6 2	5 7	11 9


More advanced disease in Part 2

Objective responses observed in 7 out of 20 patients (35% ORR)


Relative change (percent) in tumor burden from baseline to best response

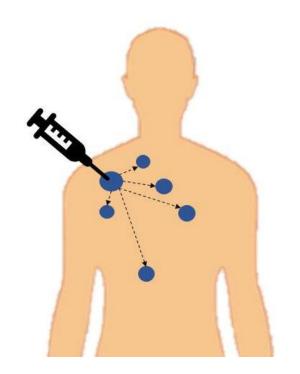
6 of 7 responders had last aPD1 treatment less than 3 months prior to entering the trial

Case example 1 – patient with complete response

Case example 2 - Patient with PR following 2 separate lines of prior PD-1 blockade

nivolumab

only



1x pembrolizumab

11x ONCOS-102 & 4x pembrolizumab

2x pembrolizumab

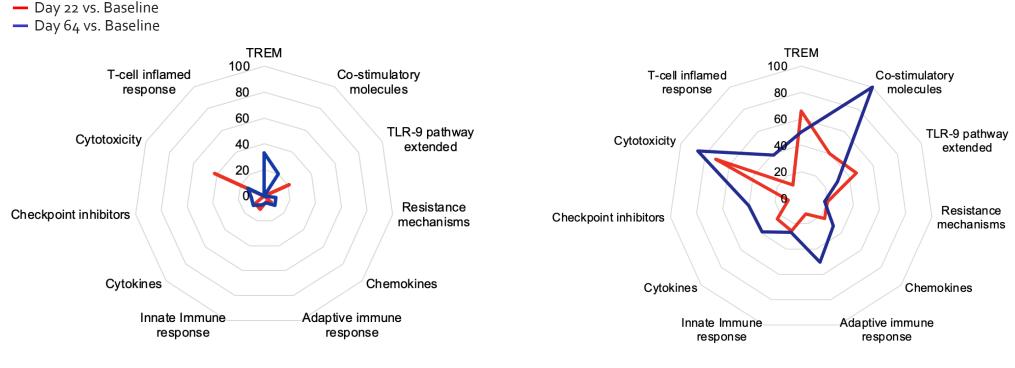
Evidence of systemic (abscopal) effect – responses observed in several non-injected lesions

Conservative definition of abscopal effect per lesion:

- ≥30% tumor reduction from baseline
- $\circ \geq 5$ mm absolute reduction

Abscopal effect observed in 4 / 20 patients (20%)

- 1 / 8 patients in Part 1 (12.5%)
- 3 / 12 patients in Part 2 (25%)

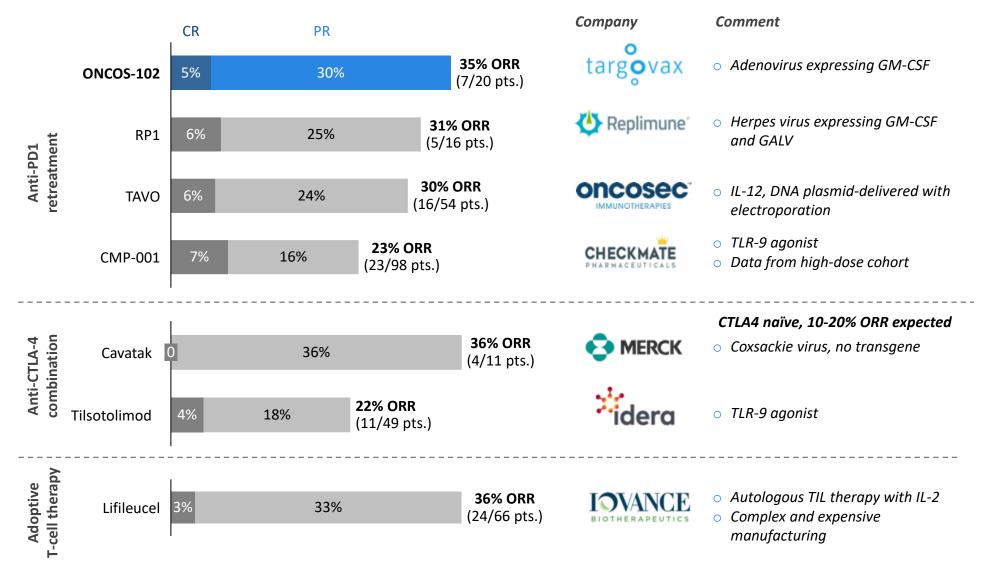

Complete regression (100%) of a non-injected lesion observed in two patients

ONCOS-102 and the combination with pembrolizumab is safe and well tolerated

Adverse Event, Preferred term	Subjects, n	Events, n	Grade 1 / 2 events	Grade 3	Grade 4
AEs related to ONCOS-102 +/- CPO					
Pyrexia	10	24	24	-	-
Chills	9	23	23	-	-
Nausea	6	10	10	-	-
Injection site pain	4	6	6	-	-
Myalgia	3	6	6	-	-
Rash maculo-papular	4	5	5	-	-
Fatigue	5	5	5	-	-
Vomiting	4	4	4	-	-
Diarrhoea	3	4	4	-	-
Injection site reaction	3	3	3	-	-
Alanine aminotransferase increased	2	2	2	-	-
Hypotension	2	2	2	-	-
Pruritus	2	2	2	-	-
Large intestine infection	1	1	-	1	-
AEs related to ONCOS-102 + pembrolizumab +/-	СРО				
Aspartate aminotransferase increased	2	4	4	-	-
Pyrexia	3	3	3	-	-
Alanine aminotransferase increased	1	3	3	-	-
Blood alkaline phosphatase increased	1	2	2	-	-
Diabetic ketoacidosis	1	1	-	-	1
Type 1 diabetes mellitus	1	1	-	-	1

Broad and persistent modulation of immune-related gene expression observed in Part 2 of the trial

Modulation of gene expression following ONCOS-102 treatment; % modulated genes


Part 1

Day 22 & Day 64 (n=2) Baseline (n=6)

Part 2

Day 22 (n=10) & Day 64 (n=7) Baseline (n=10)

ONCOS-102 + Keytruda data compares well to previous reports in PD-1 refractory melanoma

Successful ONCOS-102 phase I trial warrants further development of PD1 combination

Immune activation

Safety

- ONCOS-102 is well-tolerated, with no safety concerns
- Combines well with pembrolizumab, including concomitant dosing
- Broad and general immune activation pattern observed in ONCOS-102 injected lesions
- Deeper biomarker and mechanistic analyses ongoing

Clinical efficacy

- Class-leading ORR of 35%
- Several responses in stage IV metastatic patients

Systemic effect

- Evidence of systemic effect in 20% of patients
- Non-injected lesion completely regressed in two patients

Melanoma: Small indication, but influential

- We usually set trends followed by the bigger histologies
- Easily accessible tissue
- Relatively aggressive disease
- Hot (cutaneous) vs cold (uveal) vs mixed (mucosal) models
- Patient buy-in for biomarker heavy trials

What is next in melanoma? Ongoing trials and new combinations to watch

	Example compounds	Trials to watch		
Novel immune checkpoint inhibitors	Anti-LAG-3, TIM-3, TIGIT	 LAG-3 relatimab in combination with Nivolumab in stage IV IO naïve melanoma TIM-3 mono and in combination with anti-PD-1 in IO pretreated stage IV melanoma 		
Oncolytic viruses	T-VEC, Cavatak, LoAd- 703, ONCR-177, ONCOS-102	 Several T-Vec trials (recently failed 1L phase III for futility) Cavatak phase II 1L combination with Keytruda Phase I/II - RP1 w/Opdivo, LoAd-703 w/Tecentriq 		
Immune stimulatory agents	TLR9, CD40, OX40, IL-2, IL-12	 CMP-001 in PD-1 refractory, phase II combination w/Keytruda Tilsotolimod in PD-1 refractory, phase III combination w/Yervoy TAVO IL-12 plasmid in PD-1 refractory w/Keytruda Bempegaldesleukin + nivolumab in 1L, phase III (CA045-001) 		
Anti-VEGFR	Lenvatinib	 Combination with aPD1 in several melanoma patient populations Phase II trial in PD-1 refractory setting 		
BRAFi/MEKi	Mekinist, Tafinlar	 MEKi/BRAFi in combination with pembrolizumab in 1L BRAF V600E melanoma 		
TIL therapy	Lifileucel	 TIL therapy in several melanoma patient populations Pivotal phase II trial in PD-1 refractory setting 		

First Line Trials in Melanoma: Big Ones

Randomized, PD-1 +/- XYZ

- LAG-3: Nivolumab +/- Relatlimab (NCT03470922)
- IL-2 directed: Nivolumab +/- BEMPEG (NCTo3635983)
- **VEGF**: Pembrolizumab +/- Lenvatinib (NCTo₃82o₉86)

BRAF-MEK +/- PD-1: Enco-Bini-Spartalizumab (NCT02967692)

T-VEC: Pembrolizumab +/- T-Vec recently failed phase III for futility

First Line Trials in Melanoma: Big Ones

- Large, randomized trials, 500-700+ patients
- What do we need for a new standard?
 - Overall Survival (OS), not just PFS and ORR
 - Tolerability
 - Schedule / ease of use
- We are a **few years away** from making a new frontline standard
- Existing frontline treatment is tolerable, relatively easy, and can be durable

Post PD-1 Trials: Trends

 Critical need to develop new treatments, but it's getting harder to do it well

- Rigidly defining "PD-1 resistance"
- Slowly relaxing prior toxicity requirements (...too slowly)
- Highly selective trials (e.g. lifileucel)
- The specter of ipilimumab: 20% ORR, durability
- Single arm ORR or Randomized Trials

Thanks!

2020 MSKCC Melanoma Disease Management Group