targovax

PLEASE JOIN US FOR OUR CAPITAL MARKETS DAY

With strong clinical data generated on ONCOS-102, Targovax is moving into late-stage clinical development. In addition, a broad pipeline of preclinical assets creates a broad horizon of opportunities in the future. Join our Capital Markets Day for more details!

DATEThursday, February 18, 2021TIME2:30 PM CETLOCATIONVirtual event with live streamingREPLAYAvailable after the event

KOL PARTICIPANT:

Alexander N. Shoushtari, MD Medical Oncologist, Memorial Sloan Kettering Cancer Center

Agenda & speakers

2:30-2:40 PM	Welcome	Øystein Soug, CEO, Targovax
2:40-3:25 PM	Anti-PD1 refractory melanoma	Alexander N. Shoushtari, MD
3:25-3:45 PM	ONCOS-102 development program	Magnus Jäderberg, MD CMO, Targovax
	5-minute break	(
3:50-4:05 PM	Immune activation	Victor Levitsky, PhD, CSO, Targovax
4:05-4:15 PM	Preclinical pipeline update	Victor Levitsky, PhD, CSO, Targovax
4:15-4:25 PM	4Q update	Torbjørn Furuseth, MD, CFO, Targovax
4:25 PM	Closing remarks	Øystein Soug, CEO, Targovax

IMPORTANT NOTICE AND DISCLAIMER

This report contains certain forward-looking statements based on uncertainty, since they relate to events and depend on circumstances that will occur in future and which, by their nature, will have an impact on the results of operations and the financial condition of Targovax. Such forward-looking statements reflect the current views of Targovax and are based on the information currently available to the company. Targovax cannot give any assurance as to the correctness of such statements.

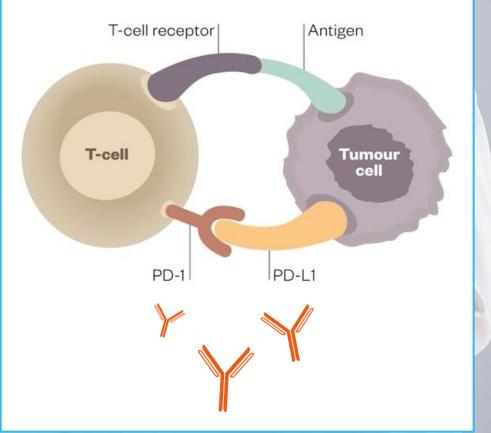
There are a number of factors that could cause actual results and developments to differ materially from those expressed or implied in these forward-looking statements. These factors include, among other things, risks or uncertainties associated with the success of future clinical trials; risks relating to personal injury or death in connection with clinical trials or following commercialization of the company's products, and liability in connection therewith; risks relating to the company's freedom to operate (competitors patents) in respect of the products it develops; risks of non-approval of patents not yet granted and the company's ability to adequately protect its intellectual property and know-how; risks relating to obtaining regulatory approval and other regulatory risks relating to the development and future commercialization of the company's products; risks that research and development will not yield new products that achieve commercial success; risks relating to the future development of the pricing environment and/or regulations for pharmaceutical products; risks relating to the company's ability to secure additional financing in the future, which may not be available on favorable terms or at all; risks relating to currency fluctuations; risks associated with technological development, growth management, general economic and business conditions; risks relating to the company's ability to the company's negative to the impact of competition.

Welcome

- 2. Anti-PD1 refractory melanoma
- 3. ONCOS-102 development program
- 4. Immune activation
- 5. Preclinical pipeline update
- 6. 4Q update
- 7. Closing remarks

THE IMMUNO-ONCOLOGY REVOLUTION

> 500,000 patients treated per year
> 3,000 ongoing clinical trials
> 40% of US cancer patients eligible
> 10 approved products


FIRST GENERATION IMMUNO-ONCOLOGY: CHECKPOINT INHIBITORS

Cornerstone of current cancer treatment

Deep and durable responses

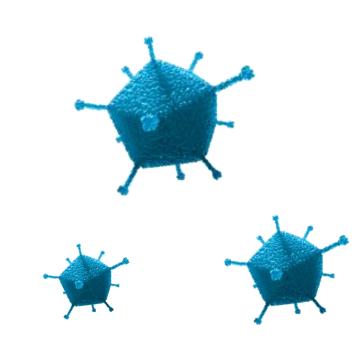

\$25b annual sales globally

7 products approved to date, many more in development

THE CHALLENGE:

MAKE PD1 CHECKPOINT INHIBITORS WORK FOR MORE PATIENTS

0-40% of treated patients respond


>50%

of responding patients relapse

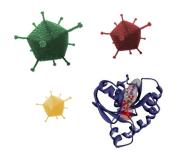
PD-1 checkpoint inhibitor monotherapy not sufficient

THE SOLUTION: ONCOS-102 IMMUNE ACTIVATION

Activates the body's own T-cells against the cancer

Unblinds the tumor to the immune system

Reverses immunosuppressive defense mechanisms in the tumor


TARGOVAX AT A GLANCE

Lead product candidate

- Class-leading data in monotherapy and combinations with chemo and aPD-1
- o Powerful immune activation
- Ideal combination partner to aPD-1
- o Path to market

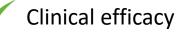
Vision: Unlock greater clinical benefits in cancer patients by deploying multifunctional platforms to target key immune regulators and oncogenic drivers

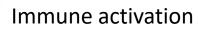
Pipeline

- Novel virus approaches
- Novel payloads and modes of action
- Mutant RAS cancer vaccine concepts

targovax

ONCOS-102


CLINICAL AND PRECLINICAL PIPELINE


Product candidate	Preclinical	Phase 1	Phase 2	Collaborator
	Melanoma Combination w/Keytruda			
ONCOS-102	Colorectal cancer Combination w/Imfinzi			AstraZeneca
	Mesothelioma Combination w/pemetrexed,	/cisplatin		
ONCOS-200 series	Next Gen viruses			leidos Papyrus
Novel mutRAS concepts				VALO THERAPEUTICS

EARLY-STAGE DEVELOPMENT SUCCESSFULLY COMPLETED – ENTERING LATE-STAGE DEVELOPMENT

Early-stage development

Late-stage development

PD1 refractory melanoma

Expansion opportunities

O Mesothelioma

O Colorectal cancer

• Other indications

- Other IO combinations
- Platform development

Product candidate	Preclinical	Phase 1	Phase 2	Collaborator
ONCOS-102	Melanoma Combination w/Keytruda			
	Colorectal cancer Combination w/Imfinzi			

DR. ALEXANDER N. SHOUSHTARI, MEMORIAL SLOAN KETTERING CANCER CENTER

- Renowned expert in melanoma, with a research focus on checkpoint refractory melanomas
- Clinical Director and Assistant attending physician, Melanoma Services, Dept of Medicine, Memorial Sloan Kettering Cancer Center
- Principal investigator of several immunotherapy trials, including the ONCOS-102 phase I trial in CPI refractory advanced melanoma

Anti-PD1 refractory melanoma *Dr. Shoushtari*

- 3. ONCOS-102 development program
- 4. Immune activation
- 5. Preclinical pipeline update
- 6. 4Q update
- 7. Closing remarks

Memorial Sloan Kettering Cancer Center

Melanoma and oncolytic adenoviruses

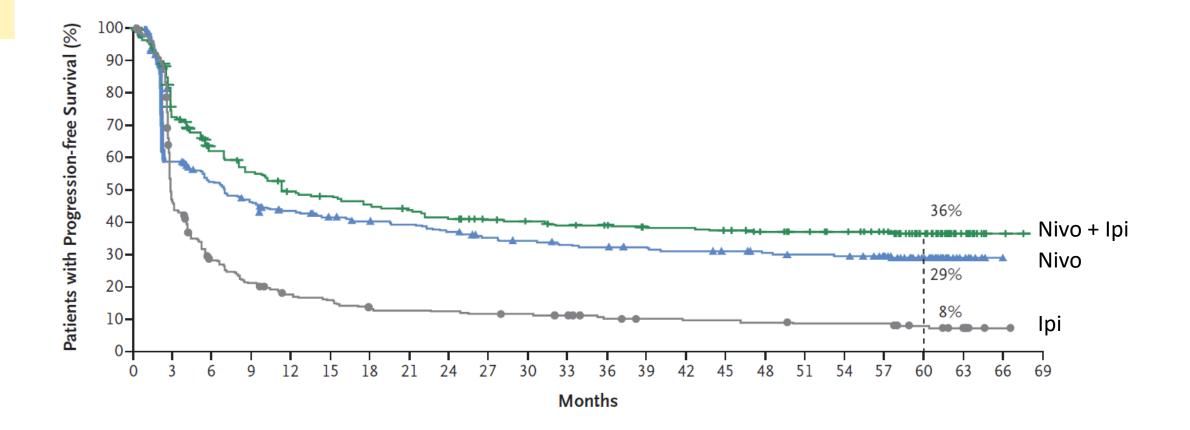
Alexander Shoushtari, MD

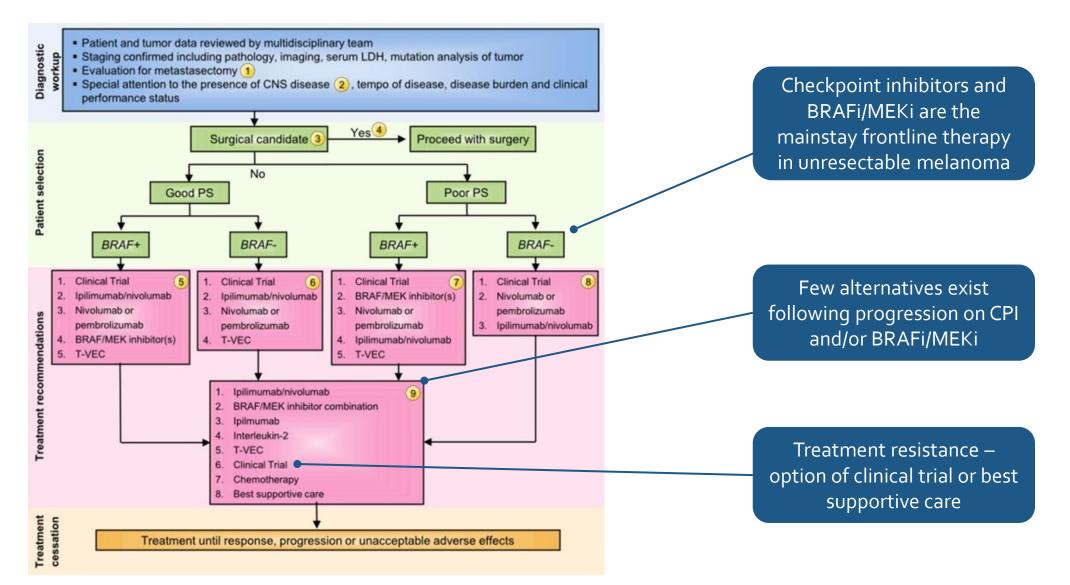
Assistant Attending Physician Melanoma and Immunotherapeutics Service Memorial Sloan Kettering Cancer Center New York, NY

February 18, 2021

Immunotherapy has revolutionized the treatment of malignant melanoma

Real world example – Patient in an ipilimumab checkpoint inhibitor trial




Prior to starting ipilimumab

One year of ipilimumab treatment

PD-1 blockade has surpassed CTLA-4, and become the cornerstone of melanoma treatment

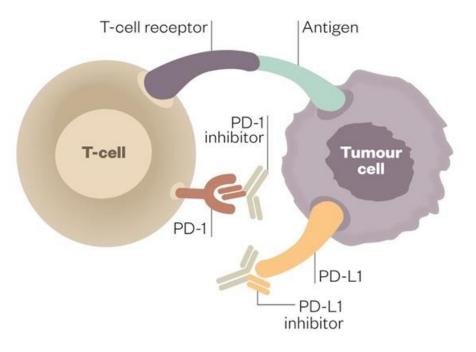
SITC treatment algorithm for late stage melanoma

PD-1 checkpoints are effective in melanoma

Two main checkpoint inhibitor (CPI) treatment choices

- Anti-PD-1 monotherapy: Pembrolizumab or Nivolumab
- Anti-PD-1 + anti-CTLA4 combination therapy: Nivolumab plus Ipilimumab

45 - 60% objective response rate


• Responses can last for years, but not forever

Overactive immune system leads to immune-related adverse events (irAEs)

- o Diarrhea / Colitis
- Liver inflammation
- Pneumonitis
- Thyroid, Pituitary dysfunction

irAE rate varies by mono- versus combination CPI therapy

- PD1 monotherapy: 1 in 4 require steroids
- PD1 + CTLA4 combination: 3 in 4 require steroids

Post PD-1/CTLA4/BRAF-MEKi progression, only experimental and off-label options are available

Standard options post PD-1

After PD-1 monotherapy

- BRAF-MEK, if V600 mutant
- Nivolumab plus ipilimumab
- o Ipilimumab alone
- Cytotoxic chemotherapy
- T-VEC if injectable

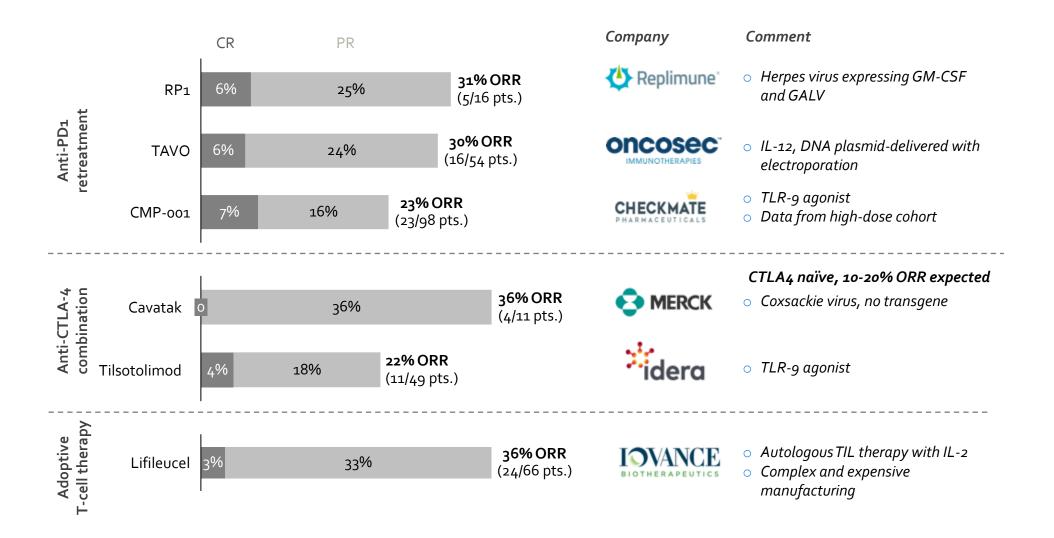
After PD-1/CTLA4 combination therapy

- BRAF-MEK, if V600 mutant
- Cytotoxic chemotherapy
- o T-VEC if injectable

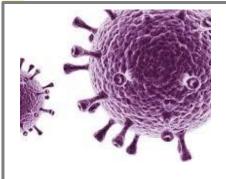
If local progression only

- Surgery
- Radiation therapy

Non-standard options post PD-1

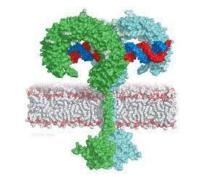

Clinical Trials (selected)

- PD-1 combination with:
 - Oncolytic virus
 - TLR9 agonist
 - LAG-3 inhibitor
 - Cytokines (IL-2, IL-12)
 - Neoantigen vaccines
 - TCR bispecifics
- Tumor Infiltrating Lymphocyte (TIL) trials

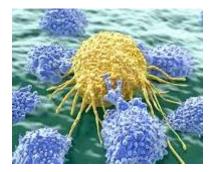

Off-label uses

- O BRAF + MEK + PD-1
- T-VEC + PD-1 inhibitor
- Radiation + PD-1 +/- Ipilimumab

Response rates reported from PD-1 checkpoint inhibitor refractory melanoma clinical trials



Promising experimental therapies available for PD-1 resistant patients

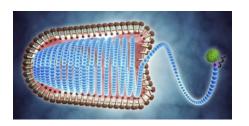

Oncolytic viruses

- Trigger oncolysis and inflammatory response via TLR-9 and other
- Reverses local immuno-suppression
- Trials ongoing in combination with PD-1 and CTLA-4

TLR-9 agonists

- Stimulate innate immune response via TLR-9 danger signaling
- Trials ongoing in combination with PD-1 and CTLA4

TIL therapy


- Autologous T-cells harvested from the patient's tumor
- Combination trials ongoing with systemic immune activators (eg IL-2)
- Potentially efficacious, but significant cost and logistics hurdles

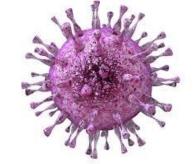
Neoantigen vaccines and TCRs

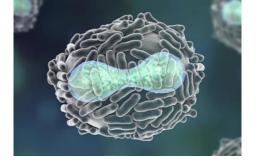
- Trigger T-cell responses to shared or personalized neoantigens
- Either personalized vaccines or shared tumor antigen approaches
- Trials ongoing with PD-1

Overview of the most common oncolytic virus classes

Small RNA viruses

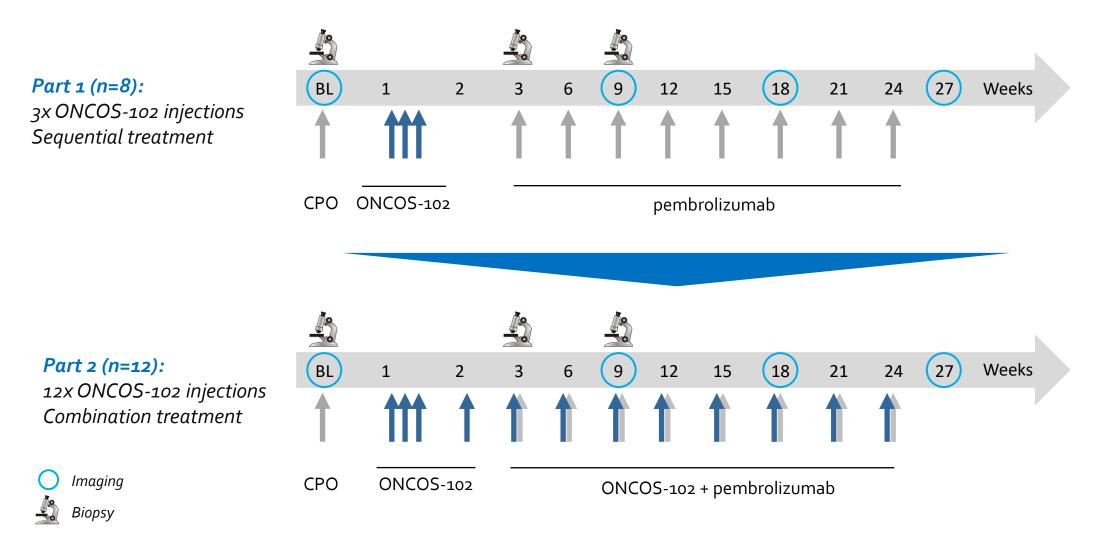
- Highly oncolytic
- Highly inflammatory




- Limited payload capacity Poor stability
- Only **sporadic evidence** of clinical efficacy

Adenovirus

- Highly inflammatory
- Versatile DNA backbone
- Less payload capacity than Herpes / Vaccinia
- Several candidates with promising early data
- Vector for several effective
 COVID-19 vaccines

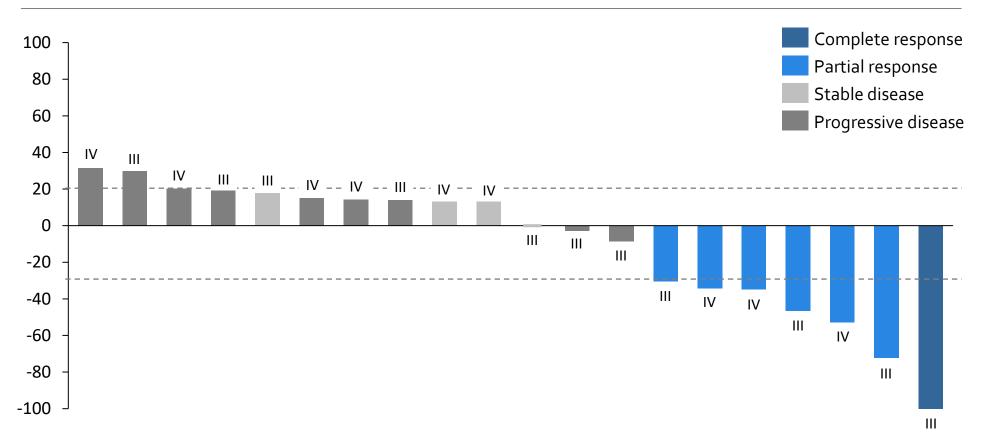

Herpes viruses

- Large payload capacity
- o Only approved virus class
- Low immunogenicity Latent infection cycle
- Mixed recent data
- o Imlygic **commercial failure**

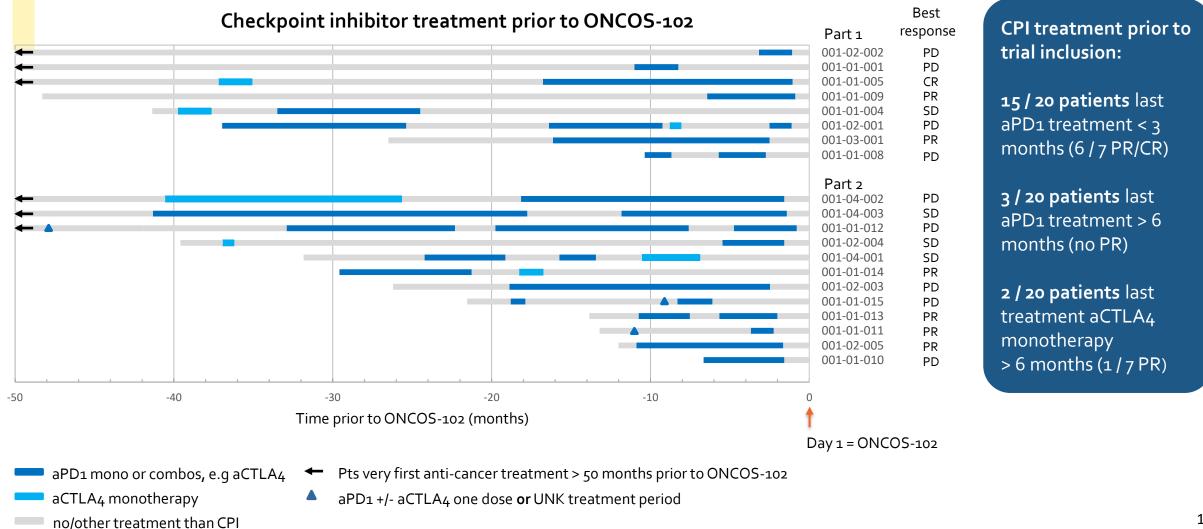
Vaccinia virus

- o Large payload capacity
- Used as vector for first, historic vaccines
- Low immunogenicity
- Large size, high complexity
- Several recent negative clinical trials

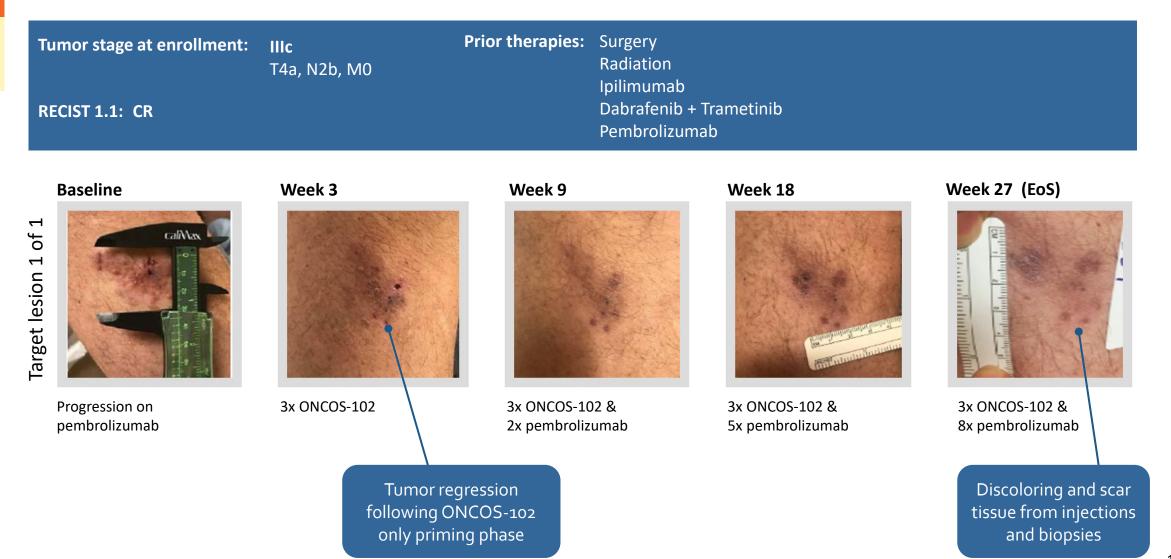
Study design of ONCOS-102 phase I trial in PD1 checkpoint-refractory melanoma


Patient and disease characteristics

Parameters	Part 1 (n=8)	Part 2 (n=12)	Total (N=20)
Age (median)	70.5y	72γ	72γ
Time from diagnosis to start of ONCOS-102 (median)	6.9у	2.9γ	4.5y
Number of treatments prior to study (average) - Surgery (average) - Treatments ex. surgery (average)	5.3 2.1 3.1	5.9 1.9 3.9	5.6 2.0 3.6
Time (months) from last anti-PD1 to study start (median)	1.8m	1.9m	1.9m
Number of prior checkpoint treatment regimens (average)	1.8	2.3	2.2
Prior CTLA-4 treatment (number of patients, %)	4 (50%)	8 (67%)	12 (60%)
Baseline number of lesions (median)	4.0	8.5	7.0
Baseline tumor burden RECIST1.1 (mm, median)	37.5	73.5	55.0
Tumor stage at enrollment - Stage III - Stage IV	6 2	5 7	11 9


More advanced disease in Part 2

Objective responses observed in 7 out of 20 patients (35% ORR)


Relative change (percent) in tumor burden from baseline to best response

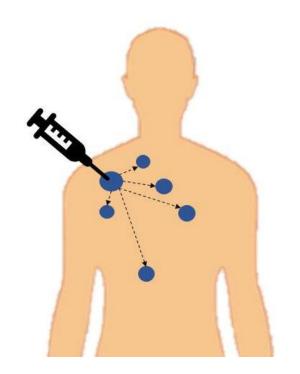
6 of 7 responders had last aPD1 treatment less than 3 months prior to entering the trial

Case example 1 – patient with complete response

Case example 2 - Patient with PR following 2 separate lines of prior PD-1 blockade

nivolumab

only



1x pembrolizumab

11x ONCOS-102 & 4x pembrolizumab

2x pembrolizumab

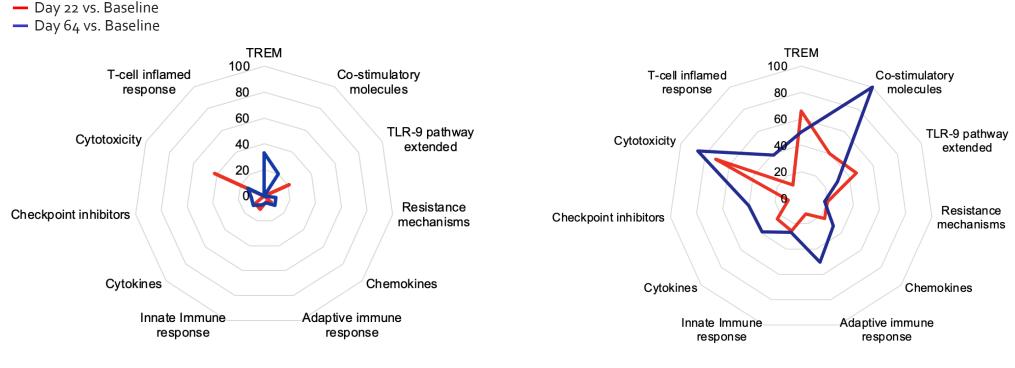
Evidence of systemic (abscopal) effect – responses observed in several non-injected lesions

Conservative definition of abscopal effect per lesion:

- ≥30% tumor reduction from baseline
- $\circ \geq 5$ mm absolute reduction

Abscopal effect observed in 4 / 20 patients (20%)

- 1 / 8 patients in Part 1 (12.5%)
- 3 / 12 patients in Part 2 (25%)

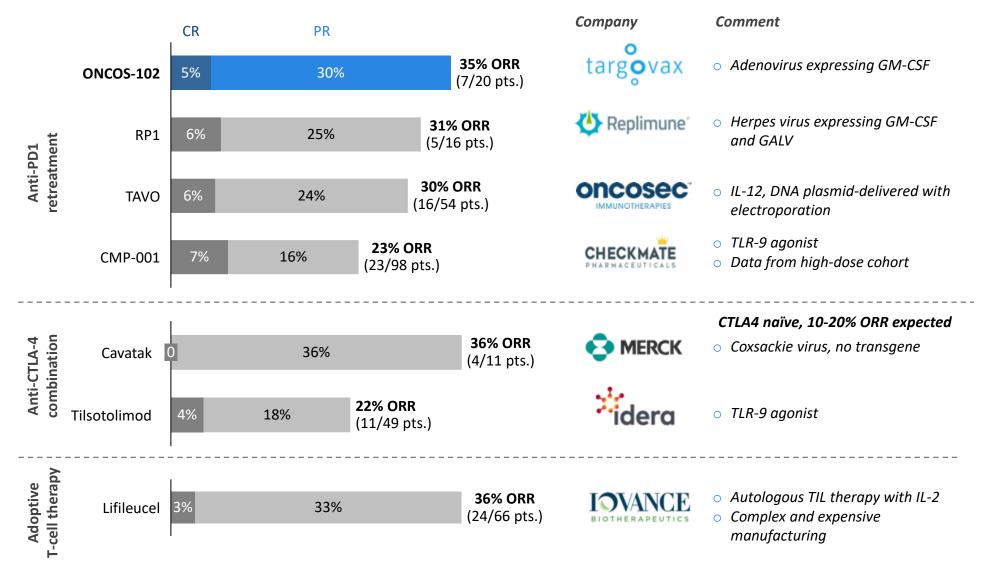

Complete regression (100%) of a non-injected lesion observed in two patients

ONCOS-102 and the combination with pembrolizumab is safe and well tolerated

Adverse Event, Preferred term	Subjects, n	Events, n	Grade 1 / 2 events	Grade 3	Grade 4
AEs related to ONCOS-102 +/- CPO					
Pyrexia	10	24	24	-	-
Chills	9	23	23	-	-
Nausea	6	10	10	-	-
Injection site pain	4	6	6	-	-
Myalgia	3	6	6	-	-
Rash maculo-papular	4	5	5	-	-
Fatigue	5	5	5	-	-
Vomiting	4	4	4	-	-
Diarrhoea	3	4	4	-	-
Injection site reaction	3	3	3	-	-
Alanine aminotransferase increased	2	2	2	-	-
Hypotension	2	2	2	-	-
Pruritus	2	2	2	-	-
Large intestine infection	1	1	-	1	-
AEs related to ONCOS-102 + pembrolizumab +/- CPO					
Aspartate aminotransferase increased	2	4	4	-	-
Pyrexia	3	3	3	-	-
Alanine aminotransferase increased	1	3	3	-	-
Blood alkaline phosphatase increased	1	2	2	-	-
Diabetic ketoacidosis	1	1	-	-	1
Type 1 diabetes mellitus	1	1	-	-	1

Broad and persistent modulation of immune-related gene expression observed in Part 2 of the trial

Modulation of gene expression following ONCOS-102 treatment; % modulated genes


Part 1

Day 22 & Day 64 (n=2) Baseline (n=6)

Part 2

Day 22 (n=10) & Day 64 (n=7) Baseline (n=10)

ONCOS-102 + Keytruda data compares well to previous reports in PD-1 refractory melanoma

Successful ONCOS-102 phase I trial warrants further development of PD1 combination

Immune activation

Safety

- ONCOS-102 is well-tolerated, with no safety concerns
- Combines well with pembrolizumab, including concomitant dosing
- Broad and general immune activation pattern observed in ONCOS-102 injected lesions
- Deeper biomarker and mechanistic analyses ongoing

Clinical efficacy

- Class-leading ORR of 35%
- Several responses in stage IV metastatic patients

Systemic effect

- Evidence of systemic effect in 20% of patients
- Non-injected lesion completely regressed in two patients

Melanoma: Small indication, but influential

- We usually set trends followed by the bigger histologies
- Easily accessible tissue
- Relatively aggressive disease
- Hot (cutaneous) vs cold (uveal) vs mixed (mucosal) models
- Patient buy-in for biomarker heavy trials

What is next in melanoma? Ongoing trials and new combinations to watch

	Example compounds	Trials to watch
Novel immune checkpoint inhibitors	Anti-LAG-3, TIM-3, TIGIT	 LAG-3 relatimab in combination with Nivolumab in stage IV IO naïve melanoma TIM-3 mono and in combination with anti-PD-1 in IO pretreated stage IV melanoma
Oncolytic viruses	T-VEC, Cavatak, LoAd- 703, ONCR-177, ONCOS-102	 Several T-Vec trials (recently failed 1L phase III for futility) Cavatak phase II 1L combination with Keytruda Phase I/II - RP1 w/Opdivo, LoAd-703 w/Tecentriq
Immune stimulatory agents	TLR9, CD40, OX40, IL-2, IL-12	 CMP-001 in PD-1 refractory, phase II combination w/Keytruda Tilsotolimod in PD-1 refractory, phase III combination w/Yervoy TAVO IL-12 plasmid in PD-1 refractory w/Keytruda Bempegaldesleukin + nivolumab in 1L, phase III (CA045-001)
Anti-VEGFR	Lenvatinib	 Combination with aPD1 in several melanoma patient populations Phase II trial in PD-1 refractory setting
BRAFi/MEKi	Mekinist, Tafinlar	 MEKi/BRAFi in combination with pembrolizumab in 1L BRAF V600E melanoma
TIL therapy	Lifileucel	 TIL therapy in several melanoma patient populations Pivotal phase II trial in PD-1 refractory setting

First Line Trials in Melanoma: Big Ones

Randomized, PD-1 +/- XYZ

- LAG-3: Nivolumab +/- Relatlimab (NCT03470922)
- IL-2 directed: Nivolumab +/- BEMPEG (NCTo3635983)
- **VEGF**: Pembrolizumab +/- Lenvatinib (NCTo₃82o₉86)

BRAF-MEK +/- PD-1: Enco-Bini-Spartalizumab (NCT02967692)

T-VEC: Pembrolizumab +/- T-Vec recently failed phase III for futility

First Line Trials in Melanoma: Big Ones

- Large, randomized trials, 500-700+ patients
- What do we need for a new standard?
 - Overall Survival (OS), not just PFS and ORR
 - Tolerability
 - Schedule / ease of use
- We are a **few years away** from making a new frontline standard
- Existing frontline treatment is tolerable, relatively easy, and can be durable

Post PD-1 Trials: Trends

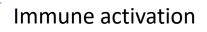
 Critical need to develop new treatments, but it's getting harder to do it well

- Rigidly defining "PD-1 resistance"
- Slowly relaxing prior toxicity requirements (...too slowly)
- Highly selective trials (e.g. lifileucel)
- The specter of ipilimumab: 20% ORR, durability
- Single arm ORR or Randomized Trials

Thanks!

2020 MSKCC Melanoma Disease Management Group


ONCOS-102 development program


- 4. Immune activation
- 5. Preclinical pipeline update
- 6. 4Q update
- 7. Closing remarks

EARLY-STAGE DEVELOPMENT SUCCESSFULLY COMPLETED – ENTERING LATE-STAGE DEVELOPMENT

Early-stage development

Late-stage development

PD1 refractory melanoma

Expansion opportunities

O Mesothelioma

O Colorectal cancer

• Other indications

- Other IO combinations
- Platform development

CHECKPOINT INHIBITORS IN THE CLINIC

Huge impact since the launch of Yervoy in 2011

- aPD1 standard of care in several solid tumor indications
- Varying response rates
 - Melanoma ca. 40% ORR
 - Lung ca. 30% ORR
 - Head & Neck ca. 20% ORR

CPI refractory cancer is a significant medical need

- Primary refractory disease: change/add CPI 10-20% ORR
- Secondary refractory disease: repeat CPI <10% ORR

Most patients don't respond to CPIs even after adding/changing CPI

 Growing trend – improve response to checkpoint inhibitors by adding immune activating agents (e.g., ONCOS-102)

PD1 REFRACTORY MELANOMA MARKET OPPORTUNITY

Incidence	~100.000 new stage III/IV cases of malignant melanoma per year in the major markets
Unresectable	~50% recur and become unresectable Total ~50.000 patients per year
PD1 resistance	~50% of cases become PD resistant Total ~25.000 patients per year
Addressable	Estimated 10.000 - 20.000 patients per year addressable with intra-tumoral therapies
Other PD1 resistance	>100.000 patients per year lung cancer >50.000 patients per year head and neck

43

ACCELERATED APPROVAL IN ANTI-PD1 REFRACTORY MELANOMA IS OUR PRIORITY

Rationale

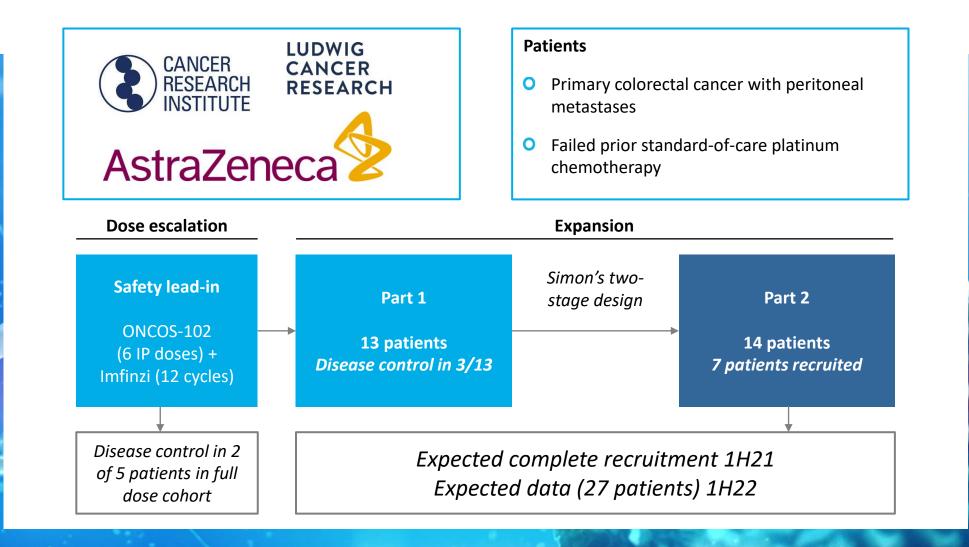
- Highly competitive clinical data
- No standard of care
- Fast route to market

Preliminary trial design – registration directed

- Single arm, < 200 patients
- Refractory status
- Primary endpoint: ORR
- Focus: systemic effect and durability
- Dosing: similar to part 2

Next steps

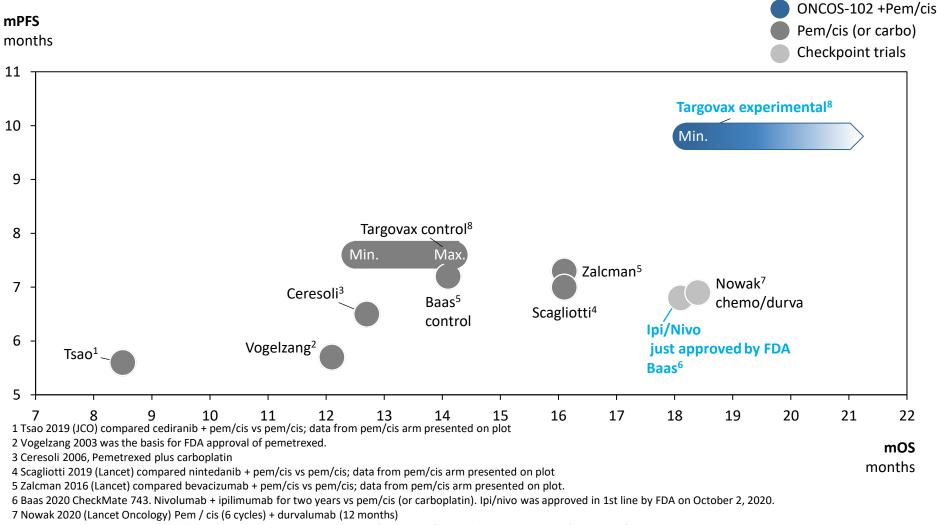
- Conclude trial design discussions with KOLs in US, EU and Australia
- Consult with FDA & other regulatory authorities to secure path forward
- Explore opportunities for collaboration partners
- Target first patient 1H 2022



Product candidate	Preclinical	Phase 1	Phase 2	Collaborator
	Melanoma Combination w/Keytruda			
ONCOS-102	Colorectal cancer Combination w/Imfinzi			
	Mesothelioma Combination w/pemetrexed/	/cisplatin		

COLLABORATION IN COLORECTAL CANCER WITH

PHASE 1/2 TRIAL COMBINING ONCOS-102 AND IMFINZI


Product candidate	Preclinical	Phase 1	Phase 2	Collaborator
	Melanoma Combination w/Keytruda			
ONCOS-102	Mesothelioma Combination w/pemetrexed/	/cisplatin		
ONCOS-200 series	Next Gen viruses			

ADVANCED MALIGNANT PLEURAL MESOTHELIOMA PHASE 1/2 TRIAL IN COMBINATION WITH CHEMO

CLINICAL OUTCOMES IN 1ST LINE COMPARE FAVORABLY TO HISTORICAL CONTROL

8 1L randomized patients mOS will change: Experimental group, 8 patients (5 censored). Control group, 6 patients (2 censored)

FAST TRACK DESIGNATION AND EVOLVING SURVIVAL DATA PROVIDE OPPORTUNITIES

Well **tolerated** combination therapy Clear clinical activity in **1st line** patients Interim **survival** data promising even without CPI FDA granted **Fast Track** designation in mesothelioma

Next steps

- Continue follow patients to determine mOS
- Decide development path
- Leverage collaboration partner Merck

ONCOS-102 OPPORTUNITIES BEYOND MELANOMA AND MESOTHELIOMA

COLORECTAL

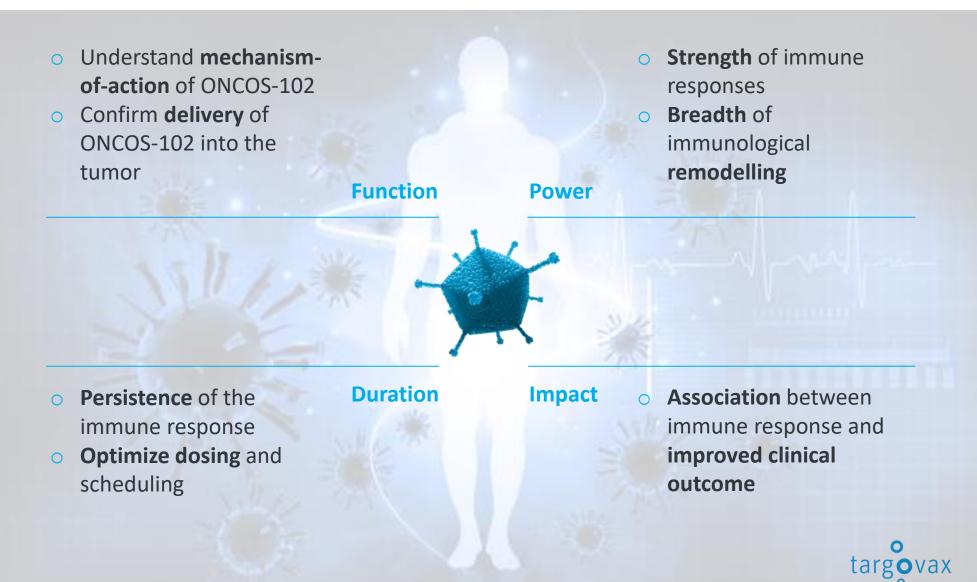
- Large medical need and strong scientific rationale for CPI combination
- Met predetermined efficacy threshold in Simon two-stage trial
- Data expected during 1H 2022
- Review opportunity and development with AstraZeneca

FURTHER OPPORTUNITIES

- Melanoma trial serves as POC for other CPI-refractory indications
- Investigate opportunities in CPI refractory indications beyond melanoma e.g. head & neck, breast cancer

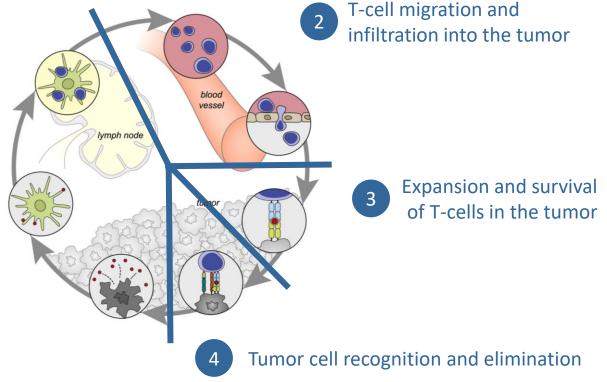
CLINICAL AND PRECLINICAL PIPELINE

Product candidate	Preclinical	Phase 1	Phase 2	Collaborator	Next expected event
	Melanoma Combination w/anti PD1				1H 2022 First patient
ONCOS-102	Colorectal cancer Combination w/Imfinzi			AstraZeneca	Update by collaborator – clinical data expected 1H22
	Mesothelioma Combination w/pemetrexed,	/cisplatin			1H 2021 Survival update
ONCOS-200 series	Next Gen viruses			leidos Papyrus	Updates at conferences
Novel mutRAS concepts				VALO THERAPEUTICS	



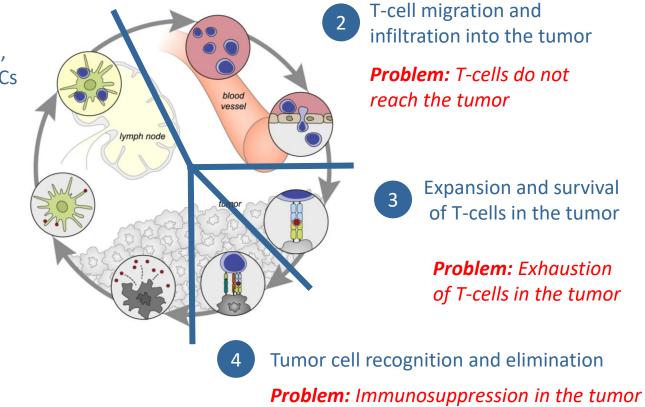
Immune activation

- 5. Preclinical pipeline update
- 6. 4Q update
- 7. Closing remarks


THE IMPORTANCE OF IMMUNOLOGICAL READ-OUTS

FOUR CRITICAL PHASES OF TUMOR-SPECIFIC IMMUNE RESPONSE

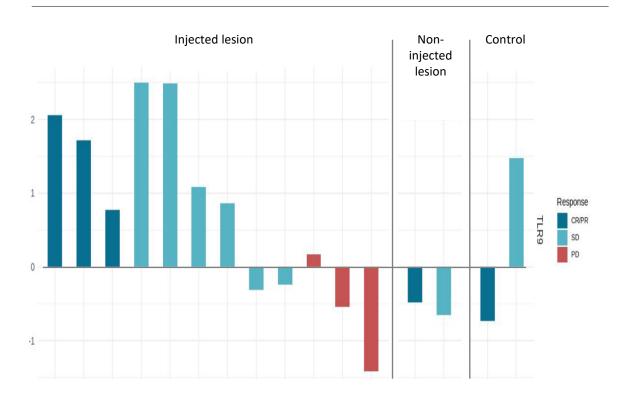
Access to tumor antigens, cross-presentation by APCs and priming of T-cells

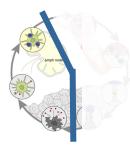


FOUR CRITICAL PHASES OF TUMOR-SPECIFIC IMMUNE RESPONSE

Access to tumor antigens, cross-presentation by APCs and priming of T-cells

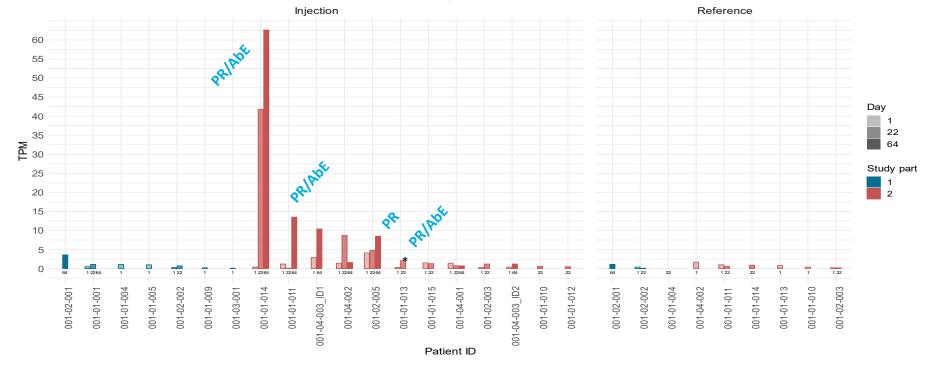
Problem: Low tumor immunogenicity and ineffective T-cell priming

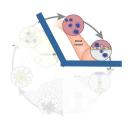




ONCOS-102 ACTIVATES DANGER SIGNALING: MESOTHELIOMA

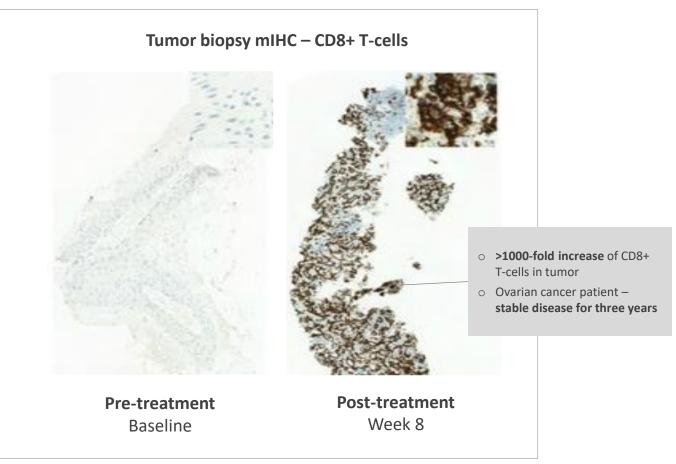
TLR9 expression in tumor RNAseq -fold change D36 vs. baseline¹, mesothelioma

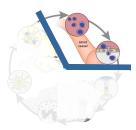



ONCOS-102 ACTIVATES DANGER SIGNALING: MELANOMA

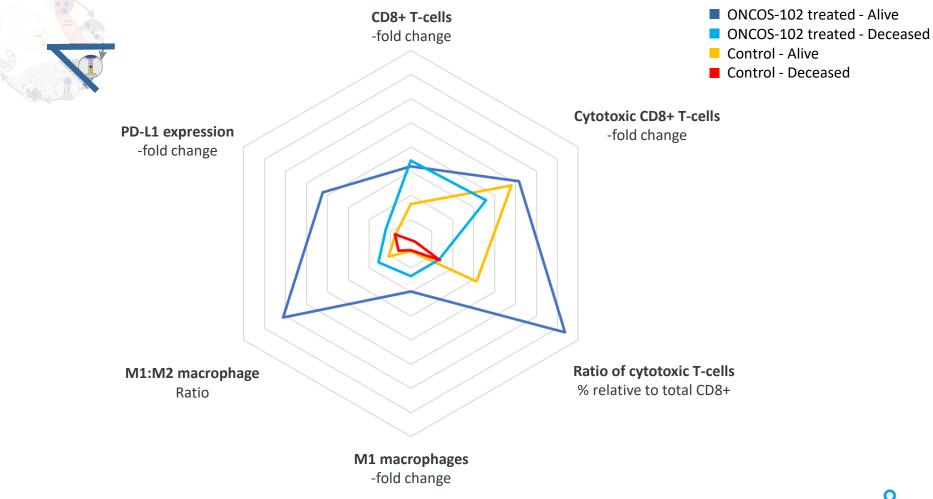
TLR9 expression Trial groups

* 001-01-13 - no data for Day 64



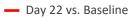


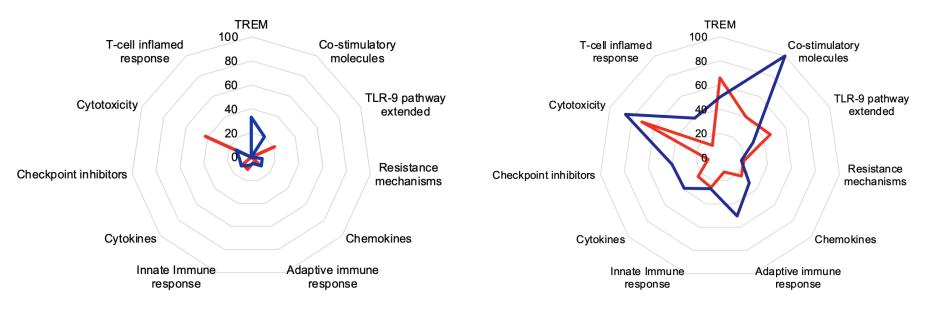
ROBUST INCREASE OF TUMOR INFILTRATION BY T-CELLS FOLLOWING ONCOS-102 TREATMENT


ONCOS-102 induced tumor T-cell infiltration

Ovarian cancer patient case example, monotherapy

ROBUST INCREASE IN T-CELL TUMOR INFILTRATION FOLLOWING ONCOS-102 TREATMENT: MESOTHELIOMA





IMMUNE-PERMISSIVE RESHAPING OF TUMOR MICROENVIRONMENT BY ONCOS-102: MELANOMA

Modulation of gene expression; Fraction (%) of genes modulated within the indicated gene groups

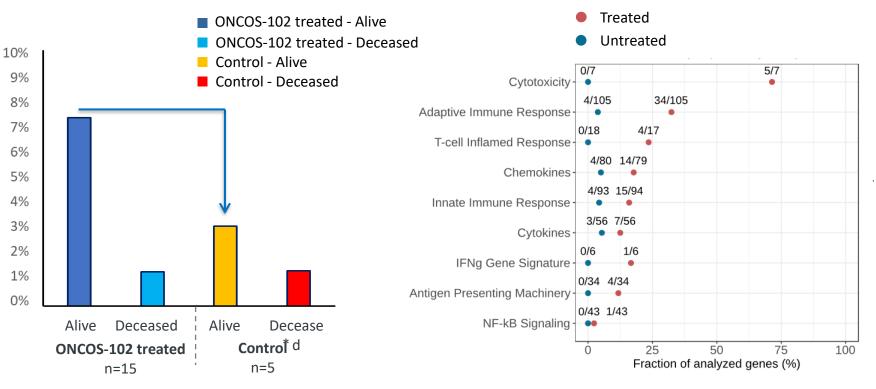
- Day 64 vs. Baseline

Part 1

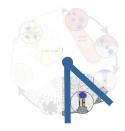
Day 22 & Day 64 (n=2) Baseline (n=6)

Part 2

Day 22 (n=10) & Day 64 (n=7) Baseline (n=10)

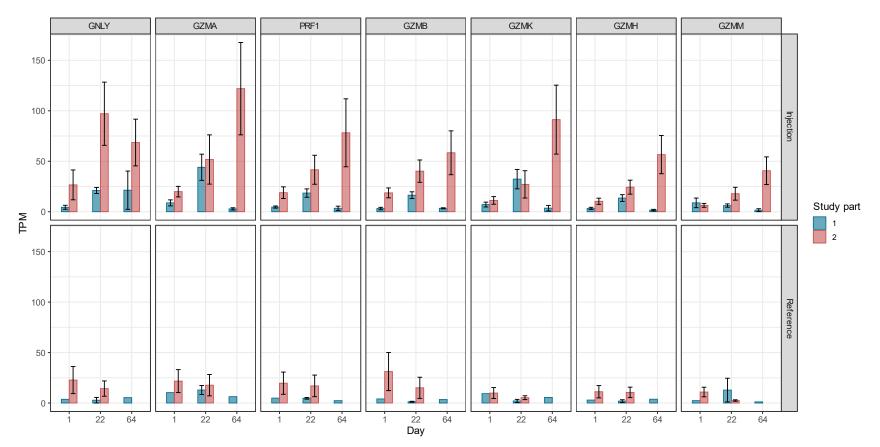

ONCOS-102 TREATMENT INCREASES CYTOTOXIC POTENTIAL OF INTRATUMORAL T-CELLS: MESOTHELIOMA

Relative level of cytotoxic GrB+ / CD8+ T-cells at day 36

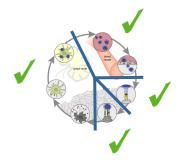

Alive vs. deceased at 12 months, mesothelioma

Modulation of tumor gene expression, Fraction of genes

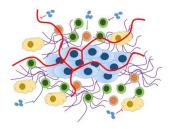
ONCOS-102 treated vs. untreated, mesothelioma



targovax


ONCOS-102 TREATMENT INCREASES CYTOTOXIC POTENTIAL ON INTRA-TUMORAL T-CELLS: MELANOMA

Cytotoxicity - mean gene expression



targovax

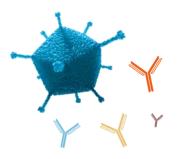
ONCOS-102 IMMUNE ACTIVATION - CONCLUSIONS

ONCOS-102 activates the immune system and counteracts multiple mechanisms of immuno-suppression operating at different steps of the cancer immunity cycle

Multifaceted modulation of the tumor micro-environment induced by ONCOS-102 is linked to clinical benefit in patients with different tumor types

ONCOS-102 induced immune activation provides **broad and powerful priming to sensitize patients** to respond to subsequent treatment with **checkpoint inhibitors**

Preclinical pipeline update


- 6. 4Q update
- 7. Closing remarks

Product candidate	Preclinical	Phase 1	Phase 2	Collaborator
	Melanoma Combination w/Keytruda			
ONCOS-200 series	Next Gen viruses			leidos
				Papyrus
Novel mutRAS				
concepts				OBLIQUE THERAPEUTICS

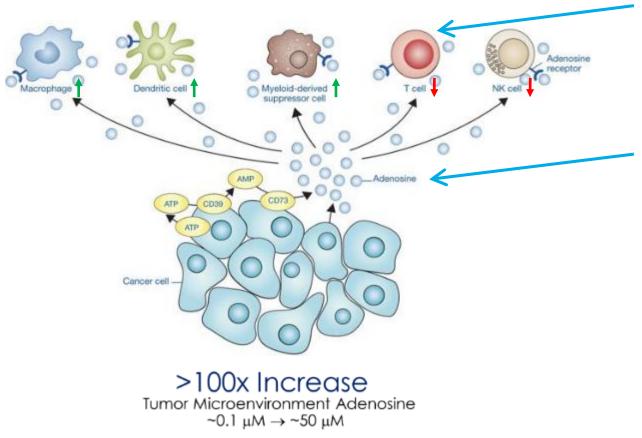
TARGOVAX'S THREE-PILLAR R&D PIPELINE STRATEGY

Novel ONCOS-102 combinations

- Maximize clinical impact of ONCOS-102 through novel clinical combinations with complementary mechanism of action
- Strong scientific rationale from existing clinical immune data

Next Generation ONCOS viruses

- Build new functionality into clinically proven ONCOS backbone
- Boosted immunological activity and anti-tumor ammunition
- Proprietary development and external collaborations


Mutant RAS vaccination

- Novel combinations and adjuvant technology for TG vaccines
- Next generation mutant RAS vaccination strategies
- Incorporate immune activation capability of ONCOS technology

NEXT GENERATION ONCOS: ONCOS-211 PRIORITIZED FOR FURTHER DEVELOPMENT

Adenosine – a key suppressor of immune cells

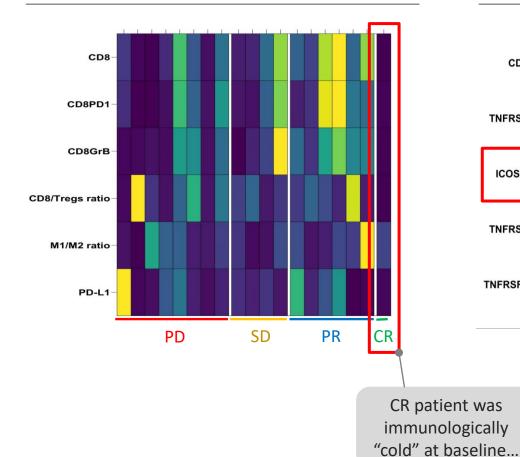
Transgene activity

Transgene 1 – ICOS-L

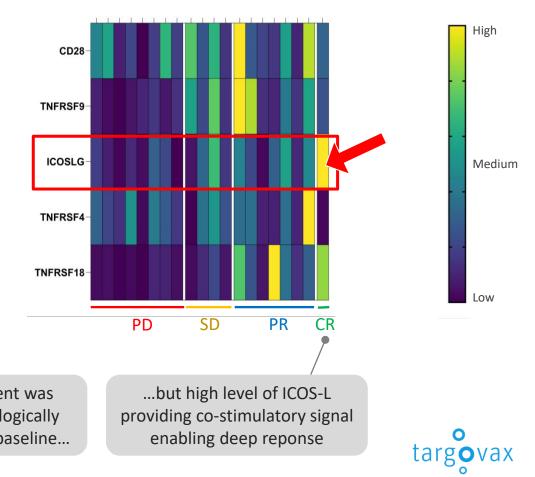
- ICOS-ligand binds to ICOS on the Tcell surface, providing a strong stimulatory signal
- Enhanced cytotoxicity

Transgene 2 – ADA

- ADA degrades adenosine released by the tumor
- Reversal of immune-suppressive tumor micro-environment


Virus activity

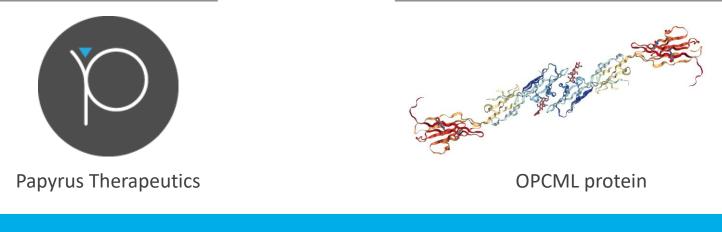
- 1. Innate immune activation
- 2. Cancer cell oncolysis
- 3. Adaptive anti-tumor immune response



ICOS-L EXPRESSION CAN BE TIED TO DEEP CLINICAL RESPONSE TO ONCOS-102

Immune cell infiltrate at Baseline, mIHC

Co-stimulatory receptor expression, gene expression

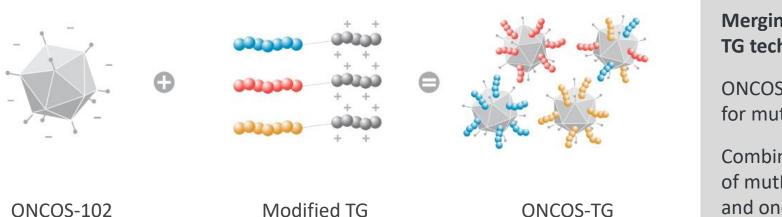

69 Unpublished company data

BUILDING TYROSINE KINASE INHIBITOR FUNCTIONALITY INTO ONCOS

Collaboration partner

Target – Tyrosine kinase inhibition

- OPCML is a **potent tumor suppressor**, inactivated in ca. 50% of all cancers
- OPCML shuts down the oncogenic signaling function of at least 8 RTKs
- OPCML suppresses epithelial-to-mesenchymal (EMT) transition

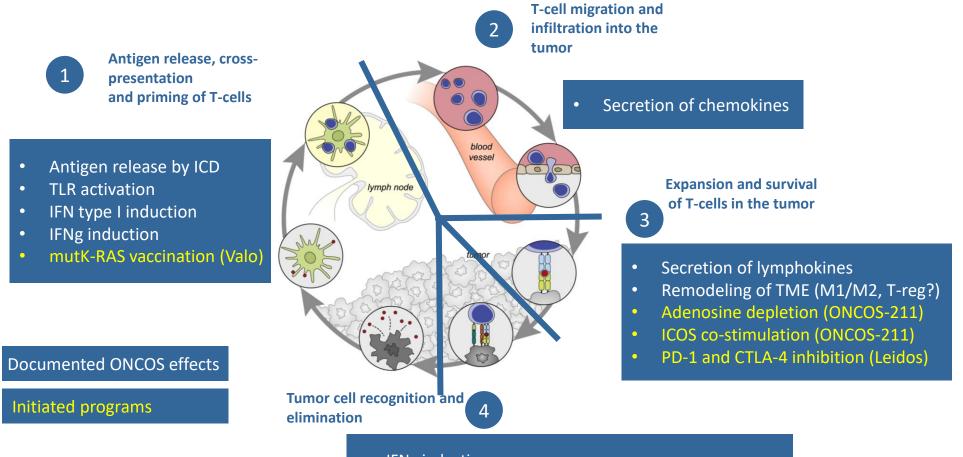

Using ONCOS to restore OPCML activity represents a novel and highly targeted mechanism of kinase inhibition in multiple cancer indications

NOVEL MUTANT RAS VACCINATION CONCEPTS INCORPORATING IMMUNOLOGICAL POWER OF ONCOS

PeptiCRAd

peptides

Merging ONCOS and TG technology


VALO

ONCOS used as carrier for mutRAS peptides

Combining the power of mutRAS vaccination and oncolysis

71

THE R&D PIPELINE STRATEGY IS DESIGNED TO ADDRESS KEY COMPONENTS OF THE CANCER IMMUNITY CYCLE

- IFNg induction
- Upregulation of T-cell killing machinery
 - Tumor growth inhibition/EMT suppression (Papyrus)

Α

4Q update

7. Closing remarks

4Q HIGHLIGHTS AND SUBSEQUENT EVENTS

ONCOS-102	 Announced 35% response rate in ONCOS-102 trial in anti-PD1 refractory melanoma patients and regression on non-injected lesions Completed Part 1 in the colorectal cancer trial, combining ONCOS-102 with Imfinzi (duravalumab), recruitment in Part 2 opened Announced encouraging 18-month survival data in mesothelioma Presented mesothelioma data at the Society for Immunotherapy of Cancer
Corporate	 Raised gross proceeds of NOK 75 million (USD 8 million), strong international demand, multiple times oversubscribed Granted EU patent covering use of ONCOS-102 in combination with CPIs Formed new Scientific Advisory Board comprised of world-renowned experts in immuno-oncology and drug development
Subsequent events	 Entered a research collaboration with Papyrus Therapeutics Granted IOVaxis 3-month extension to the exclusive license option for TG mutant RAS vaccines in Greater China and Singapore SOTIO stopped the combination trial assessing the combination of ONCOS-102 and DCVAC/PCa in prostate cancer Granted Fast Track designation by the FDA in malignant pleural mesothelioma

UPDATE ON IOVAXIS LICENSE

CEO: John Wang

Founded: 2018

HQ: Nantong, China

Fighting Cancer with Your Own Weapons

R&D focus: Shared and personalized cancer vaccines

Description

- Exclusive option to license TG01/02 vaccines for Greater China and Singapore
- License option to be executed upon approval to start first clinical trial
- IOVaxis clinical trial sponsor and responsible for local regulatory filings

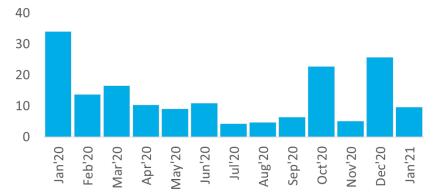
Update

- IOVaxis is still in IND application process with NMPA (Chinese FDA)
- NMPA has different requirements than Western agencies
- The License Option will be further extended with 6 months through Sept 2021

CONTINUED COST CONTROL IN 4Q20

NOK m	4Q19	1Q20	2Q20	3Q20	4Q20
Total revenue	2	0	0	0	-0
External R&D expenses	-25	-13	-14	-9	-8
Payroll and related expenses	-11	-11	-11	-9	-12
Other operating expenses	-5	-5	-5	-4	-3
Total operating expenses	-42	-30	-30	-22	-23

CURRENTLY FUNDED INTO 2022


The company

Share liquidity

~170% of shares traded last 12 months

Share turnover per month¹ Million shares

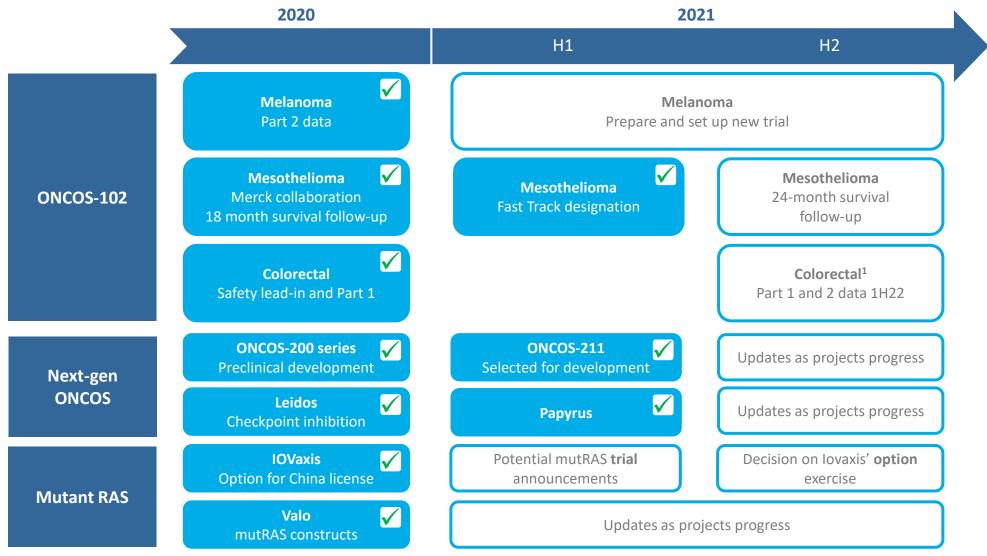
Daily value traded Average last 12 months

NOK million

3.4

USD million

0.4

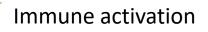

targ<mark>o</mark>vax

Closing remarks

TRACK RECORD OF STRONG EXECUTION WITH UPCOMING VALUE INFLECTION POINTS

79

CLINICAL AND PRECLINICAL PIPELINE


Product candidate	Preclinical	Phase 1	Phase 2	Collaborator	Next expected event
	Melanoma Combination w/anti PD1				1H 2022 First patient
ONCOS-102	Colorectal cancer Combination w/Imfinzi			AstraZeneca	Updates by collaborator expected 1H22
	Mesothelioma Combination w/pemetrexed,	/cisplatin			1H 2021 Survival update
ONCOS-200 series	Next Gen viruses			leidos Papyrus	Updates at conferences
Novel mutRAS concepts				VALO THERAPEUTICS	

EARLY-STAGE DEVELOPMENT SUCCESSFULLY COMPLETED – ENTERING LATE-STAGE DEVELOPMENT

Early-stage development

Late-stage development

PD1 refractory melanoma

Expansion opportunities

O Mesothelioma

O Colorectal cancer

• Other indications

- Other IO combinations
- Platform development

