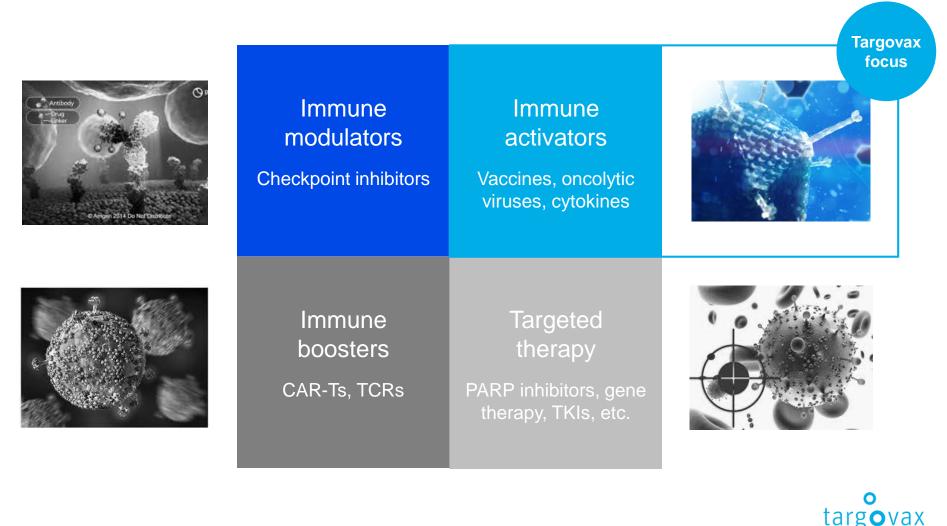

Activating the immune system to fight cancer

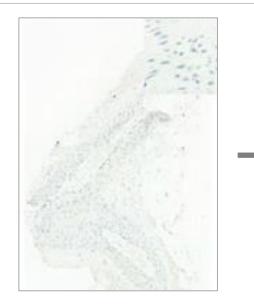
RedEye pre-ASCO seminar

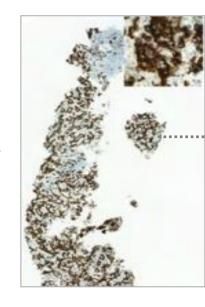
Erik Digman Wiklund, CFO 28 May 2018

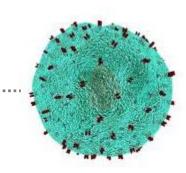


From a sequential treatment strategy directly targeting the cancer...

...to an integrated combination approach HARNESSING THE POWER OF THE PATIENT'S OWN IMMUNE SYSTEM


TARGOVAX' CORE FOCUS IS IMMUNE ACTIVATORS


	Description	Examples	Car analogy
Immune activators Oncolytic viruses, vaccines	 Make the immune system aware of the cancer Activate T-cells 	IMLYGIC ™ (talimogene laherparepvec)	Ignite the engine Switch on GPS
Immune modulators Checkpoint inhibitors	 Block stop signals that down-regulate T-cell cytotoxicity 	KEYTRUDA	Release the hand-brake
Immune boosters CAR-Ts	 Boost the immune system attack on the cancer 	(tisagenlecleucel)	Engage the turbo-charger
Targeted therapy PARP Inhibitors, TKIs etc	 Target particular genetic or molecular defects of the cancer 	laparib [®]	Replace broken spare parts


Mode of action

IMMUNE ACTIVATORS TURN COLD TUMORS HOT

Example from Targovax Phase I trial

CD8+ T-cell Recognizes and

destroys the cancer cells

Before injection of oncolytic virus

"Cold tumor" No T-cell infiltration

After injection of oncolytic virus

"Hot tumor" Full T-cell infiltration

Targovax has two complementary programs in clinical development, both PROVEN TO ACTIVATE THE IMMUNE SYSTEM

ONCOS Oncolytic virus

- o Genetically armed adenovirus
- Makes cancer antigens visible to immune system
- Induces T-cells specific to patients' tumor

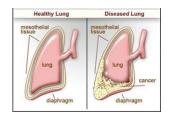
Activate and direct the immune system

Specific to the patient's cancer

TG RAS neoantigen vaccine

- Shared neoantigen, therapeutic cancer vaccine
- Targets oncogenic RAS driver mutations
- Induces mutant RAS-specific
 T-cells

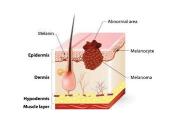
No need for individualization



ONCOS CLINICAL DEVELOPMENT STRATEGY

3

Mesothelioma Orphan disease


1

Launch indication

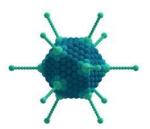
- $\circ~$ Orphan drug status
- $\circ~$ Aim to become SoC
- Ongoing phase I/II
- 15.000 patients per year

2 CPI synergy Intra-tumoral

Indications with no / limited effect of CPIs

- Ongoing melanoma phase I, combo w/PD-1
- >100.000 patients per year

CPI synergy Intra-peritoneal

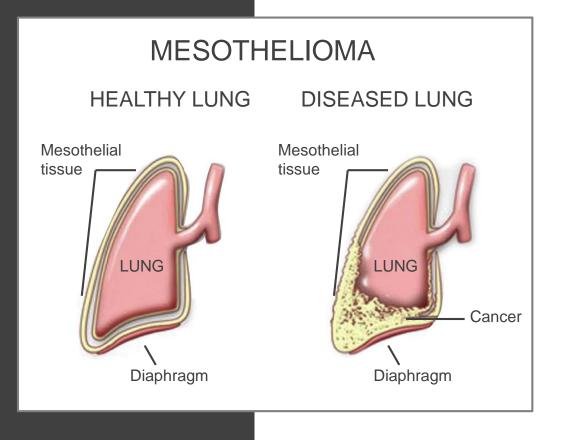


Peritoneal malignancies

- Ongoing phase I, combo w/PD-L1
- >100.000 patients per year

4

Next generation ONCOS viruses


Double transgene adenoviruses

- \circ Novel targets
- o Ongoing in vivo testing
- Broad spectrum of solid tumors

ONCOS-102 target launch indication MALIGNANT PLEURAL MESOTHELIOMA

- Orphan disease, estimated 15,000 new cases per year (EU, USA, Australia)
- Incidence is increasing worldwide and is predicted to peak in 5-10 years
- Often caused by asbestos exposure, with a latency period of up to 40 years before diagnosis
- Aggressive cancer form with median survival of 12 months
- No significant treatment advance in the last decade

targ**o**vax

Malignant pleural mesothelioma NEED FOR NEW TREATMENT APPROACHES

Surgery

Only 10% of patients suitable for resection

Technically challenging due to location

Diagnosis often too late for surgery

Radiotherapy

Rarely effective due to tumor shape

Shape of tumors make them hard to target

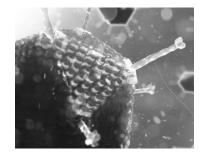
Mainly palliative care

CHEMOTHERAPY DR

Chemotherapy

Standard of care (SoC) has limited efficacy

Only approved SoC option is pemetrexed/cisplatin


6 month PFS and 12 month median OS in 1st line

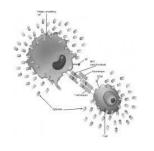
Immunotherapy

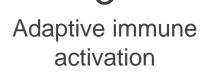
Mixed signals from early IO trials

Slight median OS improvement in early CPI trials

No/few other oncolytic viruses in development

ONCOS-102 in malignant pleural mesothelioma SIGNAL OF EFFICACY IN THE FIRST 6 PATIENTS

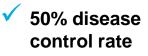

Safety


ONCOS-102 welltolerated in combination with chemotherapy

2

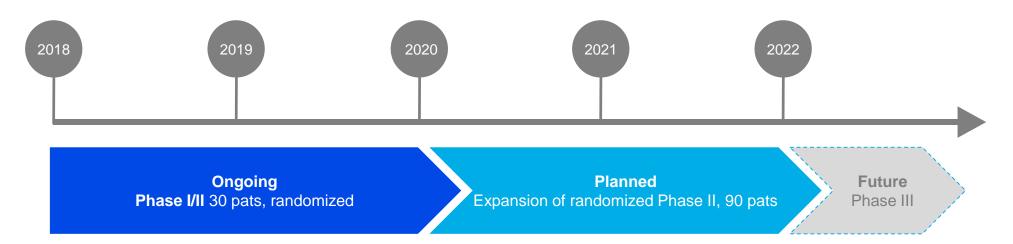
Innate immune activation

 Systemic increase of proinflammatory cytokines in 6/6 patients (IL-6, TNFα and IFNγ)



Increase in tumor infiltration of CD4+ and CD8+ T cells in 3/4 patients

Clinical efficacy


Clinical activity seen in 3/6 patients after 6 months

ONCOS-102 in malignant pleural mesothelioma DEVELOPMENT STRATEGY AND INDICATIVE TIMELINES

- Randomized ORR and OS data 30 patients
- Decide on possible CPI combination arm
- EMA & FDA advisory meetings

- Randomized ORR and OS data 90 patients
- Potentially use as basis for a submission for conditional approval
- Go/No-go for phase III OS trial for full MAA

Targovax overall CLINICAL PROGRAM TIMELINES

	Cancer Indication	H1 201	8 H2	H1 2019 H2	H1 2020
TG	Resected Pancreas	Phase I/II 🔶			
	Resected Pancreas Planned registration program		Planne	d Phase II (lead-in)	
	Colorectal	Phase Ib			
ONCOS-102	Melanoma	Phase I	\diamond		
	Mesothelioma	\diamond	Pha	se lb/ll	
	<i>Ovarian & Colorectal</i> Collab. w/CRI, Ludwig & MedImmune	Phase I/II			
	Prostate Collab. w/Sotio	Phase I	1		

targovax

Interim data

Clinical, immune and safety data

ACTIVATING THE PATIENT`S IMMUNE SYSTEM to fight cancer

Broad clinical program

Six shots on goal Several upcoming data points

Defined path to market

Aim to become frontline treatment in high unmet need cancers

Orphan status in mesothelioma and pancreas

Innovative pipeline

Next gen double transgene viruses in testing

IV program under evaluation

Learn more at: WWW.TARGOVAX.COM

